These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 27059111)

  • 41. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites.
    Huang J; Liu W; Qiu X; Tu Z; Li J; Lou H
    Int J Biol Macromol; 2021 Jul; 183():1450-1458. PubMed ID: 33974926
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methanol fractionation of softwood Kraft lignin: impact on the lignin properties.
    Saito T; Perkins JH; Vautard F; Meyer HM; Messman JM; Tolnai B; Naskar AK
    ChemSusChem; 2014 Jan; 7(1):221-8. PubMed ID: 24458739
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biomedical application of commercial polymers and novel polyisobutylene-based thermoplastic elastomers for soft tissue replacement.
    Puskas JE; Chen Y
    Biomacromolecules; 2004; 5(4):1141-54. PubMed ID: 15244424
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Processing and characteristics of canola protein-based biodegradable packaging: A review.
    Zhang Y; Liu Q; Rempel C
    Crit Rev Food Sci Nutr; 2018 Feb; 58(3):475-485. PubMed ID: 27379431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aliphatic polyester block polymers: renewable, degradable, and sustainable.
    Hillmyer MA; Tolman WB
    Acc Chem Res; 2014 Aug; 47(8):2390-6. PubMed ID: 24852135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrothermal method-assisted synthesis of self-crosslinked all-lignin-based hydrogels.
    Lv Z; Zheng Y; Zhou H; Pan Z; Li C; Dai L; Zhang M; Si C
    Int J Biol Macromol; 2022 Sep; 216():670-675. PubMed ID: 35817238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lignin-derivatives based polymers, blends and composites: A review.
    Naseem A; Tabasum S; Zia KM; Zuber M; Ali M; Noreen A
    Int J Biol Macromol; 2016 Dec; 93(Pt A):296-313. PubMed ID: 27521847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics.
    Pellis A; Comerford JW; Weinberger S; Guebitz GM; Clark JH; Farmer TJ
    Nat Commun; 2019 Apr; 10(1):1762. PubMed ID: 30992443
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Low-Temperature Pyrolysis on the Properties of Jute Fiber-Reinforced Acetylated Softwood Kraft Lignin-Based Thermoplastic Polyurethane.
    Roh HG; Kim S; Lee J; Park J
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The second green revolution? Production of plant-based biodegradable plastics.
    Mooney BP
    Biochem J; 2009 Mar; 418(2):219-32. PubMed ID: 19196243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A tough and sustainable fiber-forming material from lignin and waste poly(ethylene terephthalate).
    Akato KM; Nguyen NA; Rajan K; Harper DP; Naskar AK
    RSC Adv; 2019 Oct; 9(54):31202-31211. PubMed ID: 35527949
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exploring the role of lignin structure in molecular dynamics of lignin/bio-derived thermoplastic elastomer polyurethane blends.
    Ortiz-Serna P; Carsí M; Culebras M; Collins MN; Sanchis MJ
    Int J Biol Macromol; 2020 May; ():. PubMed ID: 32376254
    [TBL] [Abstract][Full Text] [Related]  

  • 54. On the role of the monolignol gamma-carbon functionality in lignin biopolymerization.
    Holmgren A; Norgren M; Zhang L; Henriksson G
    Phytochemistry; 2009 Jan; 70(1):147-55. PubMed ID: 19056096
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oxidation Level and Glycidyl Ether Structure Determine Thermal Processability and Thermomechanical Properties of Arabinoxylan-Derived Thermoplastics.
    Deralia PK; du Poset AM; Lund A; Larsson A; Ström A; Westman G
    ACS Appl Bio Mater; 2021 Apr; 4(4):3133-3144. PubMed ID: 35014401
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extrusion foaming of semi-crystalline PLA and PLA/thermoplastic starch blends.
    Mihai M; Huneault MA; Favis BD; Li H
    Macromol Biosci; 2007 Jul; 7(7):907-20. PubMed ID: 17599338
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermal mobility of β-O-4-type artificial lignin.
    Uraki Y; Sugiyama Y; Koda K; Kubo S; Kishimoto T; Kadla JF
    Biomacromolecules; 2012 Mar; 13(3):867-72. PubMed ID: 22339317
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.
    Shibakami M; Tsubouchi G; Sohma M; Hayashi M
    Carbohydr Polym; 2015 Mar; 119():1-7. PubMed ID: 25563938
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D printing of lignin: Challenges, opportunities and roads onward.
    Ebers LS; Arya A; Bowland CC; Glasser WG; Chmely SC; Naskar AK; Laborie MP
    Biopolymers; 2021 Jun; 112(6):e23431. PubMed ID: 33974275
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical and Physical Modification of Lignin for Green Polymeric Composite Materials.
    Komisarz K; Majka TM; Pielichowski K
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.