These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 27059133)

  • 21. The Incorporation of Marine Coral Microparticles into Collagen-Based Scaffolds Promotes Osteogenesis of Human Mesenchymal Stromal Cells via Calcium Ion Signalling.
    Sheehy EJ; Lemoine M; Clarke D; Gonzalez Vazquez A; O'Brien FJ
    Mar Drugs; 2020 Jan; 18(2):. PubMed ID: 31979233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro.
    Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM
    Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.
    Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Innovative biodegradable poly(L-lactide)/collagen/hydroxyapatite composite fibrous scaffolds promote osteoblastic proliferation and differentiation.
    Zhou G; Liu S; Ma Y; Xu W; Meng W; Lin X; Wang W; Wang S; Zhang J
    Int J Nanomedicine; 2017; 12():7577-7588. PubMed ID: 29075116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proliferation of rat mesenchymal stem cells in collagen sponges reinforced with poly(ethylene terephthalate) fibers by stirring culture method.
    Takamoto T; Ichinohe N; Tabata Y
    J Biomater Sci Polym Ed; 2012; 23(13):1741-53. PubMed ID: 21943688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment.
    He F; Li J; Ye J
    Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1139-54. PubMed ID: 27120980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dual-application poly (dl-lactic-co-glycolic) acid (PLGA)-chitosan composite scaffold for potential use in bone tissue engineering.
    Boukari Y; Qutachi O; Scurr DJ; Morris AP; Doughty SW; Billa N
    J Biomater Sci Polym Ed; 2017 Nov; 28(16):1966-1983. PubMed ID: 28777694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative evaluation of the effect of polymer chemistry and fiber orientation on mesenchymal stem cell differentiation.
    Rowland DC; Aquilina T; Klein A; Hakimi O; Alexis-Mouthuy P; Carr AJ; Snelling SJ
    J Biomed Mater Res A; 2016 Nov; 104(11):2843-53. PubMed ID: 27399850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.
    Liu X; Huang C; Feng Y; Liang J; Fan Y; Gu Z; Zhang X
    J Biomater Sci Polym Ed; 2010; 21(6-7):963-77. PubMed ID: 20482996
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ectopic bone formation in collagen sponge self-assembled peptide-amphiphile nanofibers hybrid scaffold in a perfusion culture bioreactor.
    Hosseinkhani H; Hosseinkhani M; Tian F; Kobayashi H; Tabata Y
    Biomaterials; 2006 Oct; 27(29):5089-98. PubMed ID: 16782187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality.
    Raftery RM; Woods B; Marques ALP; Moreira-Silva J; Silva TH; Cryan SA; Reis RL; O'Brien FJ
    Acta Biomater; 2016 Oct; 43():160-169. PubMed ID: 27402181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure.
    He F; Ye J
    J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive glass-collagen/poly (glycolic acid) scaffold nanoparticles exhibit improved biological properties and enhance osteogenic lineage differentiation of mesenchymal stem cells.
    Toosi S; Naderi-Meshkin H; Esmailzadeh Z; Behravan G; Ramakrishna S; Behravan J
    Front Bioeng Biotechnol; 2022; 10():963996. PubMed ID: 36159698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the molecular mechanism of improved proliferation and osteogenic potential of human mesenchymal stem cells grown on a polyelectrolyte complex derived from non-mulberry silk fibroin and chitosan.
    Bissoyi A; Kumar Singh A; Kumar Pattanayak S; Bit A; Kumar Sinha S; Patel A; Jain V; Kumar Patra P
    Biomed Mater; 2017 Dec; 13(1):015011. PubMed ID: 29216011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.