BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27059282)

  • 1. Astringent Mouthfeel as a Consequence of Lubrication Failure.
    Ma S; Lee H; Liang Y; Zhou F
    Angew Chem Int Ed Engl; 2016 May; 55(19):5793-7. PubMed ID: 27059282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of salivary proteins in the mechanism of astringency.
    Lee CA; Ismail B; Vickers ZM
    J Food Sci; 2012 Apr; 77(4):C381-7. PubMed ID: 22515235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Cross-linked Multi-Network.
    Xu R; Ma S; Lin P; Yu B; Zhou F; Liu W
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7593-7601. PubMed ID: 28891633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers.
    Paissoni MA; Motta G; Giacosa S; Rolle L; Gerbi V; Río Segade S
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):3328-3365. PubMed ID: 37282812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Oral Roughness Perception and Comparison with Mechanism of Astringency Perception.
    Linne B; Simons CT
    Chem Senses; 2017 Sep; 42(7):525-535. PubMed ID: 28575283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of astringency: Structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs.
    Ployon S; Morzel M; Belloir C; Bonnotte A; Bourillot E; Briand L; Lesniewska E; Lherminier J; Aybeke E; Canon F
    Food Chem; 2018 Jul; 253():79-87. PubMed ID: 29502847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Astringency is a trigeminal sensation that involves the activation of G protein-coupled signaling by phenolic compounds.
    Schöbel N; Radtke D; Kyereme J; Wollmann N; Cichy A; Obst K; Kallweit K; Kletke O; Minovi A; Dazert S; Wetzel CH; Vogt-Eisele A; Gisselmann G; Ley JP; Bartoshuk LM; Spehr J; Hofmann T; Hatt H
    Chem Senses; 2014 Jul; 39(6):471-87. PubMed ID: 24718416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salivary protein levels as a predictor of perceived astringency in model systems and solid foods.
    Fleming EE; Ziegler GR; Hayes JE
    Physiol Behav; 2016 Sep; 163():56-63. PubMed ID: 27129672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Astringent Stimuli on Salivary Protein Interactions Elucidated by Complementary Proteomics Approaches.
    Delius J; Médard G; Kuster B; Hofmann T
    J Agric Food Chem; 2017 Mar; 65(10):2147-2154. PubMed ID: 28225606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tannic acid: a versatile polyphenol for design of biomedical hydrogels.
    Jafari H; Ghaffari-Bohlouli P; Niknezhad SV; Abedi A; Izadifar Z; Mohammadinejad R; Varma RS; Shavandi A
    J Mater Chem B; 2022 Aug; 10(31):5873-5912. PubMed ID: 35880440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Astringency and its sub-qualities: a review of astringency mechanisms and methods for measuring saliva lubrication.
    Wang S; Smyth HE; Olarte Mantilla SM; Stokes JR; Smith PA
    Chem Senses; 2024 Jan; 49():. PubMed ID: 38591722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wine tannins and their aggregation/release with lipids and proteins: Review and perspectives for neurodegenerative diseases.
    Dufourc EJ
    Biophys Chem; 2024 Apr; 307():107178. PubMed ID: 38277878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turbidity as a measure of salivary protein reactions with astringent substances.
    Horne J; Hayes J; Lawless HT
    Chem Senses; 2002 Sep; 27(7):653-9. PubMed ID: 12200346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A physiological model of tea-induced astringency.
    Nayak A; Carpenter GH
    Physiol Behav; 2008 Oct; 95(3):290-4. PubMed ID: 18590751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.
    Cala O; Pinaud N; Simon C; Fouquet E; Laguerre M; Dufourc EJ; Pianet I
    FASEB J; 2010 Nov; 24(11):4281-90. PubMed ID: 20605948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of polyphenolic drugs from dynamically bonded layer-by-layer films.
    Zhou L; Chen M; Tian L; Guan Y; Zhang Y
    ACS Appl Mater Interfaces; 2013 May; 5(9):3541-8. PubMed ID: 23547529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of supplementation with three commercial inactive dry yeasts on the colour, phenolic compounds, polysaccharides and astringency of a model wine solution and red wine.
    González-Royo E; Esteruelas M; Kontoudakis N; Fort F; Canals JM; Zamora F
    J Sci Food Agric; 2017 Jan; 97(1):172-181. PubMed ID: 26970323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Quantification of astringency for traditional Chinese medicine based on animal preference index and electronic tongue].
    Han X; Jiang H; Lin JZ; Han L; Xiong X; Jiao JJ; Zhang YY; Zhang DK; Yang M
    Zhongguo Zhong Yao Za Zhi; 2017 Feb; 42(3):486-492. PubMed ID: 28952253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts.
    Morell P; Chen J; Fiszman S
    Food Funct; 2017 Feb; 8(2):545-553. PubMed ID: 27220414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interactions of epigallocatechin-3-gallate with human whole saliva and parotid saliva.
    Yao JW; Lin CJ; Chen GY; Lin F; Tao T
    Arch Oral Biol; 2010 Jul; 55(7):470-8. PubMed ID: 20593553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.