BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27059282)

  • 21. Sensory properties of wine tannin fractions: implications for in-mouth sensory properties.
    McRae JM; Schulkin A; Kassara S; Holt HE; Smith PA
    J Agric Food Chem; 2013 Jan; 61(3):719-27. PubMed ID: 23289627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical Affinity between Tannin Size and Salivary Protein Binding Abilities: Implications for Wine Astringency.
    Ma W; Waffo-Teguo P; Jourdes M; Li H; Teissedre PL
    PLoS One; 2016; 11(8):e0161095. PubMed ID: 27518822
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-healable and anti-freezing ion conducting hydrogel-based artificial bioelectronic tongue sensing toward astringent and bitter tastes.
    Khan A; Ahmed S; Sun BY; Chen YC; Chuang WT; Chan YH; Gupta D; Wu PW; Lin HC
    Biosens Bioelectron; 2022 Feb; 198():113811. PubMed ID: 34823963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach.
    Fleming EE; Ziegler GR; Hayes JE
    Chem Senses; 2016 Sep; 41(7):601-10. PubMed ID: 27252355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oral astringency: a tactile component of flavor.
    Green BG
    Acta Psychol (Amst); 1993 Oct; 84(1):119-25. PubMed ID: 8237452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyphenols, astringency and proline-rich proteins.
    Luck G; Liao H; Murray NJ; Grimmer HR; Warminski EE; Williamson MP; Lilley TH; Haslam E
    Phytochemistry; 1994 Sep; 37(2):357-71. PubMed ID: 7765619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The material basis of astringency and the deastringent effect of polysaccharides: A review.
    Liu J; Xie J; Lin J; Xie X; Fan S; Han X; Zhang DK; Han L
    Food Chem; 2023 Mar; 405(Pt B):134946. PubMed ID: 36410216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aversive effect of tannic acid on drinking behavior in mice of an inbred strain: potential animal model for assessing astringency.
    Ramírez M; Toledo H; Obreque-Slier E; Peña-Neira A; López-Solís RO
    J Agric Food Chem; 2011 Nov; 59(21):11744-51. PubMed ID: 21958051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biophysical insight into the interaction mechanism of plant derived polyphenolic compound tannic acid with homologous mammalian serum albumins.
    Ishtikhar M; Ahmad E; Siddiqui Z; Ahmad S; Khan MV; Zaman M; Siddiqi MK; Nusrat S; Chandel TI; Ajmal MR; Khan RH
    Int J Biol Macromol; 2018 Feb; 107(Pt B):2450-2464. PubMed ID: 29102789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods.
    Ferruzzi MG; Bordenave N; Hamaker BR
    Physiol Behav; 2012 Nov; 107(4):591-7. PubMed ID: 22387574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of aqueous lubrication in the hydrophilic hydrogel Gemini interface.
    Dunn AC; Pitenis AA; Urueña JM; Schulze KD; Angelini TE; Sawyer WG
    Proc Inst Mech Eng H; 2015 Dec; 229(12):889-94. PubMed ID: 26614802
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenolic composition and mouthfeel characteristics resulting from blending Chilean red wines.
    Cáceres-Mella A; Peña-Neira A; Avilés-Gálvez P; Medel-Marabolí M; Del Barrio-Galán R; López-Solís R; Canals JM
    J Sci Food Agric; 2014 Mar; 94(4):666-76. PubMed ID: 23847104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between wine phenolic compounds and human saliva in astringency perception.
    García-Estévez I; Ramos-Pineda AM; Escribano-Bailón MT
    Food Funct; 2018 Mar; 9(3):1294-1309. PubMed ID: 29417111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surfactant-induced friction reduction for hydrogels in the boundary lubrication regime.
    Kamada K; Furukawa H; Kurokawa T; Tada T; Tominaga T; Nakano Y; Gong JP
    J Phys Condens Matter; 2011 Jul; 23(28):284107. PubMed ID: 21709329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties.
    Sahiner N; Sagbas S; Sahiner M; Silan C; Aktas N; Turk M
    Int J Biol Macromol; 2016 Jan; 82():150-9. PubMed ID: 26526171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Astringency Sensitivity to Tannic Acid: Effect of Ageing and Saliva.
    Wang M; Septier C; Brignot H; Martin C; Canon F; Feron G
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tannic acid-stabilized pericardium tissue: IR spectroscopy, atomic force microscopy, and dielectric spectroscopy investigations.
    Jastrzebska M; Zalewska-Rejdak J; Wrzalik R; Kocot A; Mroz I; Barwinski B; Turek A; Cwalina B
    J Biomed Mater Res A; 2006 Jul; 78(1):148-56. PubMed ID: 16619255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation on interaction of tannic acid with type I collagen and its effect on thermal, enzymatic, and conformational stability for tissue engineering applications.
    Velmurugan P; Singam ER; Jonnalagadda RR; Subramanian V
    Biopolymers; 2014 May; 101(5):471-83. PubMed ID: 23996786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent developments on polyphenol–protein interactions: effects on tea and coffee taste, antioxidant properties and the digestive system.
    Bandyopadhyay P; Ghosh AK; Ghosh C
    Food Funct; 2012 Jun; 3(6):592-605. PubMed ID: 22465955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.