These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27059282)

  • 41. Release properties of tannic acid from hydrogen bond driven antioxidative cellulose nanofibrous films.
    Zhou B; Hu X; Zhu J; Wang Z; Wang X; Wang M
    Int J Biol Macromol; 2016 Oct; 91():68-74. PubMed ID: 27234492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opponency of astringent and fat sensations.
    des Gachons CP; Mura E; Speziale C; Favreau CJ; Dubreuil GF; Breslin PA
    Curr Biol; 2012 Oct; 22(19):R829-30. PubMed ID: 23058798
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comprehensive metabolomics analysis of Torreya grandis nuts with the effective de-astringent treatment during the postharvest ripening stage.
    Song L; Meng X; Song H; Gao L; Gao Y; Chen W; Huan W; Suo J; Yu W; Hu Y; Yang B; Zhang Z; Wu J
    Food Chem; 2023 Jan; 398():133859. PubMed ID: 35987001
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Individual astringency responsiveness affects the acceptance of phenol-rich foods.
    Dinnella C; Recchia A; Tuorila H; Monteleone E
    Appetite; 2011 Jun; 56(3):633-42. PubMed ID: 21354451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits.
    Shang YF; Cao H; Ma YL; Zhang C; Ma F; Wang CX; Ni XL; Lee WJ; Wei ZJ
    Food Chem; 2019 Feb; 274():118-122. PubMed ID: 30372915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro studies on the interactions of blood lipid level-related biological molecules with gallic acid and tannic acid.
    Zeng X; Sheng Z; Li X; Fan X; Jiang W
    J Sci Food Agric; 2019 Dec; 99(15):6882-6892. PubMed ID: 31386202
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular progress in research on fruit astringency.
    He M; Tian H; Luo X; Qi X; Chen X
    Molecules; 2015 Jan; 20(1):1434-51. PubMed ID: 25599149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
    Zou Y; Guo J; Yin SW; Wang JM; Yang XQ
    J Agric Food Chem; 2015 Aug; 63(33):7405-14. PubMed ID: 26226053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lubrication behavior of ex-vivo salivary pellicle influenced by tannins, gallic acid and mannoproteins.
    Agorastos G; van Nielen O; van Halsema E; Scholten E; Bast A; Klosse P
    Heliyon; 2022 Dec; 8(12):e12347. PubMed ID: 36582694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soft and ion-conducting hydrogel artificial tongue for astringency perception.
    Yeom J; Choe A; Lim S; Lee Y; Na S; Ko H
    Sci Adv; 2020 Jun; 6(23):eaba5785. PubMed ID: 32548269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Quantitative determination of interactions between tannic acid and a model protein using diffusion and precipitation assays on cellulose membranes.
    Obreque-Slier E; Mateluna C; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Jul; 58(14):8375-9. PubMed ID: 20583840
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the Relationship between Red Wine Matrix, Tannin Activity, and Sensory Properties.
    Watrelot AA; Byrnes NK; Heymann H; Kennedy JA
    J Agric Food Chem; 2016 Nov; 64(47):9116-9123. PubMed ID: 27802589
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins.
    Rinaldi A; Gambuti A; Moio L
    J Food Sci; 2012 Apr; 77(4):C485-90. PubMed ID: 22515240
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Novel Quantitative Prediction Approach for Astringency Level of Herbs Based on an Electronic Tongue.
    Han X; Jiang H; Zhang D; Zhang Y; Xiong X; Jiao J; Xu R; Yang M; Han L; Lin J
    Pharmacogn Mag; 2017; 13(51):492-497. PubMed ID: 28839378
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temporary modification of salivary protein profile and individual responses to repeated phenolic astringent stimuli.
    Dinnella C; Recchia A; Vincenzi S; Tuorila H; Monteleone E
    Chem Senses; 2010 Jan; 35(1):75-85. PubMed ID: 19942580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oral astringent stimuli alter the enamel pellicle's ultrastructure as revealed by electron microscopy.
    Rehage M; Delius J; Hofmann T; Hannig M
    J Dent; 2017 Aug; 63():21-29. PubMed ID: 28619693
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vegetable tannins - lessons of a phytochemical lifetime.
    Haslam E
    Phytochemistry; 2007; 68(22-24):2713-21. PubMed ID: 18037145
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Connotation and mitigation of polyphenolic astringency in Chinese medicine].
    Han X; Zheng Y; Xie XL; Han L; Lin JZ; Wu ZF; Zhang DK
    Zhongguo Zhong Yao Za Zhi; 2022 Oct; 47(20):5443-5451. PubMed ID: 36471958
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of beverage carbonation on lubrication mechanisms and mouthfeel.
    Vlădescu SC; Bozorgi S; Hu S; Baier SK; Myant C; Carpenter G; Reddyhoff T
    J Colloid Interface Sci; 2021 Mar; 586():142-151. PubMed ID: 33162047
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ethanol Concentration Influences the Mechanisms of Wine Tannin Interactions with Poly(L-proline) in Model Wine.
    McRae JM; Ziora ZM; Kassara S; Cooper MA; Smith PA
    J Agric Food Chem; 2015 May; 63(17):4345-52. PubMed ID: 25877783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.