These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27059282)

  • 61. Saliva characteristics and individual sensitivity to phenolic astringent stimuli.
    Dinnella C; Recchia A; Fia G; Bertuccioli M; Monteleone E
    Chem Senses; 2009 May; 34(4):295-304. PubMed ID: 19193699
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interaction between bisphenol A and tannic acid: spectroscopic titration approach.
    Omoike A; Brandt B
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jun; 79(1):185-90. PubMed ID: 21435941
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The colloidal state of tannins impacts the nature of their interaction with proteins: the case of salivary proline-rich protein/procyanidins binding.
    Cala O; Dufourc EJ; Fouquet E; Manigand C; Laguerre M; Pianet I
    Langmuir; 2012 Dec; 28(50):17410-8. PubMed ID: 23173977
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of the direct interaction between apple condensed tannins and cholesterol in vitro.
    Zeng X; Du Z; Ding X; Jiang W
    Food Chem; 2020 Mar; 309():125762. PubMed ID: 31670123
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structural requirements for stabilization of vascular elastin by polyphenolic tannins.
    Isenburg JC; Karamchandani NV; Simionescu DT; Vyavahare NR
    Biomaterials; 2006 Jul; 27(19):3645-51. PubMed ID: 16527345
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Consumer perception of astringency in clear acidic whey protein beverages.
    Childs JL; Drake M
    J Food Sci; 2010; 75(9):S513-21. PubMed ID: 21535625
    [TBL] [Abstract][Full Text] [Related]  

  • 67. New insights into the oral interactions of different families of phenolic compounds: Deepening the astringency mouthfeels.
    Guerreiro C; Brandão E; de Jesus M; Gonçalves L; Pérez-Gregório R; Mateus N; de Freitas V; Soares S
    Food Chem; 2022 May; 375():131642. PubMed ID: 34838404
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Application of thyme extract in the prescription of dental gels produced on Carbopol base].
    Kołodziejska J; Berner-Strzelczyk A; Piechota-Urbańska M
    Polim Med; 2009; 39(2):31-8. PubMed ID: 19708499
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bulk, Foam, and Interfacial Properties of Tannic Acid/Sodium Caseinate Nanocomplexes.
    Zhan F; Li J; Wang Y; Shi M; Li B; Sheng F
    J Agric Food Chem; 2018 Jul; 66(26):6832-6839. PubMed ID: 29883106
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Shear bond strength of two adhesives to bovine dentin contaminated with various astringents.
    Xu X; Chen Q; Lederer A; Bernau C; Lai G; Kaisarly D; Dent DM; Kunzelmann KH
    Am J Dent; 2015 Aug; 28(4):229-34. PubMed ID: 26437505
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines.
    Rinaldi A; Blaiotta G; Aponte M; Moio L
    Food Microbiol; 2016 Feb; 53(Pt B):128-34. PubMed ID: 26678140
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid.
    Yang X; Huang P; Wang H; Cai S; Liao Y; Mo Z; Xu X; Ding C; Zhao C; Li J
    Colloids Surf B Biointerfaces; 2017 Dec; 160():136-143. PubMed ID: 28922632
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Thermodynamics of grape and wine tannin interaction with polyproline: implications for red wine astringency.
    McRae JM; Falconer RJ; Kennedy JA
    J Agric Food Chem; 2010 Dec; 58(23):12510-8. PubMed ID: 21070019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemical modification of gelatin by a natural phenolic cross-linker, tannic acid.
    Zhang X; Do MD; Casey P; Sulistio A; Qiao GG; Lundin L; Lillford P; Kosaraju S
    J Agric Food Chem; 2010 Jun; 58(11):6809-15. PubMed ID: 20469911
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Self-assembled colloidal complexes of polyphenol-gelatin and their stabilizing effects on emulsions.
    Huang Y; Li A; Qiu C; Teng Y; Wang Y
    Food Funct; 2017 Sep; 8(9):3145-3154. PubMed ID: 28776625
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film.
    Wang Y; Li J; Li B
    J Agric Food Chem; 2016 Jul; 64(28):5736-41. PubMed ID: 27378105
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Flow field-flow fractionation-inductively coupled optical emission spectrometric investigation of the size-based distribution of iron complexed to phytic and tannic acids in a food suspension: implications for iron availability.
    Purawatt S; Siripinyanond A; Shiowatana J
    Anal Bioanal Chem; 2007 Oct; 389(3):733-42. PubMed ID: 17534611
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Towards a molecular interpretation of astringency: synthesis, 3D structure, colloidal state, and human saliva protein recognition of procyanidins.
    Cala O; Fabre S; Pinaud N; Dufourc EJ; Fouquet E; Laguerre M; Pianet I
    Planta Med; 2011 Jul; 77(11):1116-22. PubMed ID: 21412697
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrogen bonded multilayer films based on poly(2-oxazoline)s and tannic acid.
    Sundaramurthy A; Vergaelen M; Maji S; Auzély-Velty R; Zhang Z; De Geest BG; Hoogenboom R
    Adv Healthc Mater; 2014 Dec; 3(12):2040-7. PubMed ID: 25274164
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity.
    Saul N; Pietsch K; Stürzenbaum SR; Menzel R; Steinberg CE
    J Nat Prod; 2011 Aug; 74(8):1713-20. PubMed ID: 21805983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.