These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 2705929)

  • 1. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm.
    Stern D; Schoenlein RW; Puliafito CA; Dobi ET; Birngruber R; Fujimoto JG
    Arch Ophthalmol; 1989 Apr; 107(4):587-92. PubMed ID: 2705929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared laser surgery of the cornea. Studies with a Raman-shifted neodymium:YAG laser at 2.80 and 2.92 micron.
    Stern D; Puliafito CA; Dobi ET; Reidy WT
    Ophthalmology; 1988 Oct; 95(10):1434-41. PubMed ID: 3226691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of ablation of corneal tissue by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):479-86. PubMed ID: 7842704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of corneal ablation with picosecond laser pulses at 211 nm and 263 nm.
    Hu XH; Juhasz T
    Lasers Surg Med; 1996; 18(4):373-80. PubMed ID: 8732576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excimer laser ablation of the cornea and lens. Experimental studies.
    Puliafito CA; Steinert RF; Deutsch TF; Hillenkamp F; Dehm EJ; Adler CM
    Ophthalmology; 1985 Jun; 92(6):741-8. PubMed ID: 4034169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tangential corneal surface ablation with 193- and 308-nm excimer and 2936-nm erbium-YAG laser irradiation.
    Belgorod BM; Ediger MN; Weiblinger RP; Erlandson RA
    Arch Ophthalmol; 1992 Apr; 110(4):533-6. PubMed ID: 1562264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond optical ranging of corneal incision depth.
    Stern D; Lin WZ; Puliafito CA; Fujimoto JG
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):99-104. PubMed ID: 2912917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ophthalmic surgeries on
    Körber M; Fellinger J; Fritsche M; Giese A; Kostourou K; Kopf D; Kottcke M; Luciani F; Schmidbauer JM; Wenk J; Braun B
    Front Med (Lausanne); 2024; 11():1345976. PubMed ID: 38390574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid state ultraviolet laser (213 nm) ablation of the cornea and synthetic collagen lenticules.
    Gailitis RP; Ren QS; Thompson KP; Lin JT; Waring GO
    Lasers Surg Med; 1991; 11(6):556-62. PubMed ID: 1753850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the efficacy of Nd:YAG fourth harmonic (266 nm) in comparison with ArF excimer (193 nm) in laser corneal reshaping: ex vivo pilot study.
    Abdelhalim I; Hamdy O; Khattab MA; Abdelkawi S; Hassab Elnaby S; Hassan AA
    Int Ophthalmol; 2023 Sep; 43(9):3087-3096. PubMed ID: 37083872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser ablation threshold dependence on pulse duration for fused silica and corneal tissues: experiments and modeling.
    Giguère D; Olivié G; Vidal F; Toetsch S; Girard G; Ozaki T; Kieffer JC; Nada O; Brunette I
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1562-8. PubMed ID: 17491624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF oscillator/regenerative amplifier laser.
    Niemz MH; Klancnik EG; Bille JF
    Lasers Surg Med; 1991; 11(5):426-31. PubMed ID: 1816477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of ultrashort laser pulses for intrastromal refractive surgery.
    Lubatschowski H; Maatz G; Heisterkamp A; Hetzel U; Drommer W; Welling H; Ertmer W
    Graefes Arch Clin Exp Ophthalmol; 2000 Jan; 238(1):33-9. PubMed ID: 10664050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Photoablation of the cornea with pulsed 2790 nm ErCr:YSGG laser irradiation. Basic studies].
    Lubatschowski H; Kermani O; Asshauer T
    Ophthalmologe; 1993 Apr; 90(2):183-90. PubMed ID: 8490304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [In vitro studies of refractive corneal surgery using the excimer laser with quartz fiber].
    Müller-Stolzenburg N; Buchwald HJ; Müller G; Kar H; Dörschel K; Nieuwenhuis I
    Fortschr Ophthalmol; 1989; 86(6):592-6. PubMed ID: 2625287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological effects of nanosecond- and femtosecond-pulsed laser ablation on human middle ear ossicles.
    Ilgner J; Wehner M; Lorenzen J; Bovi M; Westhofen M
    J Biomed Opt; 2006; 11(1):014004. PubMed ID: 16526881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Femtosecond laser-assisted selective reduction of neovascularization in rat cornea.
    Sidhu MS; Choi MY; Woo SY; Lee HK; Lee HS; Kim KJ; Jeoung SC; Choi JS; Joo CK; Park IH
    Lasers Med Sci; 2014 Jul; 29(4):1417-27. PubMed ID: 24570086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.