BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27059440)

  • 1. Contribution of Electrostatics to the Kinetics of Electron Transfer from NADH-Cytochrome b5 Reductase to Fe(III)-Cytochrome b5.
    Kollipara S; Tatireddy S; Pathirathne T; Rathnayake LK; Northrup SH
    J Phys Chem B; 2016 Aug; 120(33):8193-207. PubMed ID: 27059440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient kinetics of intracomplex electron transfer in the human cytochrome b5 reductase-cytochrome b5 system: NAD+ modulates protein-protein binding and electron transfer.
    Meyer TE; Shirabe K; Yubisui T; Takeshita M; Bes MT; Cusanovich MA; Tollin G
    Arch Biochem Biophys; 1995 Apr; 318(2):457-64. PubMed ID: 7733677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of carboxyl residues surrounding heme of human cytochrome b5 in the electrostatic interaction with NADH-cytochrome b5 reductase.
    Kawano M; Shirabe K; Nagai T; Takeshita M
    Biochem Biophys Res Commun; 1998 Apr; 245(3):666-9. PubMed ID: 9588172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography of human cytochrome b
    Samhan-Arias AK; Almeida RM; Ramos S; Cordas CM; Moura I; Gutierrez-Merino C; Moura JJG
    Biochim Biophys Acta Bioenerg; 2018 Feb; 1859(2):78-87. PubMed ID: 29111436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures of the naturally fused CS and cytochrome b
    Benson DR; Lovell S; Mehzabeen N; Galeva N; Cooper A; Gao P; Battaile KP; Zhu H
    Acta Crystallogr D Struct Biol; 2019 Jul; 75(Pt 7):628-638. PubMed ID: 31282472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidations of the catalytic cycle of NADH-cytochrome b5 reductase by X-ray crystallography: new insights into regulation of efficient electron transfer.
    Yamada M; Tamada T; Takeda K; Matsumoto F; Ohno H; Kosugi M; Takaba K; Shoyama Y; Kimura S; Kuroki R; Miki K
    J Mol Biol; 2013 Nov; 425(22):4295-306. PubMed ID: 23831226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes.
    Liang ZX; Kurnikov IV; Nocek JM; Mauk AG; Beratan DN; Hoffman BM
    J Am Chem Soc; 2004 Mar; 126(9):2785-98. PubMed ID: 14995196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Features of Cytochrome
    Gutiérrez-Merino C; Martínez-Costa OH; Monsalve M; Samhan-Arias AK
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible docking-based molecular dynamics/steered molecular dynamics calculations of protein-protein contacts in a complex of cytochrome P450 1A2 with cytochrome b5.
    Jeřábek P; Florián J; Stiborová M; Martínek V
    Biochemistry; 2014 Oct; 53(42):6695-705. PubMed ID: 25313797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic properties deduced from refined structures of NADH-cytochrome b5 reductase and the other flavin-dependent reductases: pyridine nucleotide-binding and interaction with an electron-transfer partner.
    Nishida H; Miki K
    Proteins; 1996 Sep; 26(1):32-41. PubMed ID: 8880927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterologous expression of an endogenous rat cytochrome b(5)/cytochrome b(5) reductase fusion protein: identification of histidines 62 and 85 as the heme axial ligands.
    Davis CA; Dhawan IK; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Apr; 400(1):63-75. PubMed ID: 11913972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c.
    Rodríguez-Marañón MJ; Qiu F; Stark RE; White SP; Zhang X; Foundling SI; Rodríguez V; Schilling CL; Bunce RA; Rivera M
    Biochemistry; 1996 Dec; 35(50):16378-90. PubMed ID: 8973214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5.
    Northrup SH; Thomasson KA; Miller CM; Barker PD; Eltis LD; Guillemette JG; Inglis SC; Mauk AG
    Biochemistry; 1993 Jul; 32(26):6613-23. PubMed ID: 8392365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial hydration, dynamics and electron transfer: multi-scale ET modeling of the transient [myoglobin, cytochrome b5] complex.
    Keinan S; Nocek JM; Hoffman BM; Beratan DN
    Phys Chem Chem Phys; 2012 Oct; 14(40):13881-9. PubMed ID: 22955681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interaction between NADH-cytochrome b5 reductase and cytochrome b5 studied by site-directed mutagenesis.
    Shirabe K; Nagai T; Yubisui T; Takeshita M
    Biochim Biophys Acta; 1998 Apr; 1384(1):16-22. PubMed ID: 9602031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of flavin-binding motif amino acid mutations in the NADH-cytochrome b5 reductase catalytic domain on protein stability and catalysis.
    Kimura S; Nishida H; Iyanagi T
    J Biochem; 2001 Oct; 130(4):481-90. PubMed ID: 11574067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NCB5OR is a novel soluble NAD(P)H reductase localized in the endoplasmic reticulum.
    Zhu H; Larade K; Jackson TA; Xie J; Ladoux A; Acker H; Berchner-Pfannschmidt U; Fandrey J; Cross AR; Lukat-Rodgers GS; Rodgers KR; Bunn HF
    J Biol Chem; 2004 Jul; 279(29):30316-25. PubMed ID: 15131110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.