These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 27059444)
21. Radiological characterisation of alkali-activated construction materials containing red mud, fly ash and ground granulated blast-furnace slag. Sas Z; Sha W; Soutsos M; Doherty R; Bondar D; Gijbels K; Schroeyers W Sci Total Environ; 2019 Apr; 659():1496-1504. PubMed ID: 31096359 [TBL] [Abstract][Full Text] [Related]
22. Fresh and Hardened Properties of Portland Cement-Slag Concrete Activated Using the By-Product of the Liquid Crystal Display Manufacturing Process. Choi S; Pyo S Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33007900 [TBL] [Abstract][Full Text] [Related]
23. Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements. Vanoutrive H; Van den Heede P; Alderete N; Andrade C; Bansal T; Camões A; Cizer Ö; De Belie N; Ducman V; Etxeberria M; Frederickx L; Grengg C; Ignjatović I; Ling TC; Liu Z; Garcia-Lodeiro I; Lothenbach B; Medina Martinez C; Sanchez-Montero J; Olonade K; Palomo A; Phung QT; Rebolledo N; Sakoparnig M; Sideris K; Thiel C; Visalakshi T; Vollpracht A; von Greve-Dierfeld S; Wei J; Wu B; Zając M; Zhao Z; Gruyaert E Mater Struct; 2022; 55(3):99. PubMed ID: 35401024 [TBL] [Abstract][Full Text] [Related]
24. Comparative Study on Chloride Binding Capacity of Cement-Fly Ash System and Cement-Ground Granulated Blast Furnace Slag System with Diethanol-Isopropanolamine. Liu H; Zhang Y; Liu J; Feng Z; Kong S Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947793 [TBL] [Abstract][Full Text] [Related]
25. A Study on Suitability of EAF Oxidizing Slag in Concrete: An Eco-Friendly and Sustainable Replacement for Natural Coarse Aggregate. Sekaran A; Palaniswamy M; Balaraju S ScientificWorldJournal; 2015; 2015():972567. PubMed ID: 26421315 [TBL] [Abstract][Full Text] [Related]
26. Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Raghav M; Park T; Yang HM; Lee SY; Karthick S; Lee HS Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885424 [TBL] [Abstract][Full Text] [Related]
28. Revisiting the Effect of Slag in Reducing Heat of Hydration in Concrete in Comparison to Other Supplementary Cementitious Materials. Moon H; Ramanathan S; Suraneni P; Shon CS; Lee CJ; Chung CW Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30262797 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy. Yang HM; Kwon SJ; Myung NV; Singh JK; Lee HS; Mandal S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963399 [TBL] [Abstract][Full Text] [Related]
30. Recycling of Sustainable Co-Firing Fly Ashes as an Alkali Activator for GGBS in Blended Cements. Wu YH; Huang R; Tsai CJ; Lin WT Materials (Basel); 2015 Feb; 8(2):784-798. PubMed ID: 28787970 [TBL] [Abstract][Full Text] [Related]
31. Performance of Sustainable Fly Ash and Slag Cement Mortars Exposed to Simulated and Real In Situ Mediterranean Conditions along 90 Warm Season Days. Ortega JM; Esteban MD; Sánchez I; Climent MÁ Materials (Basel); 2017 Oct; 10(11):. PubMed ID: 29088107 [TBL] [Abstract][Full Text] [Related]
32. Alkali-activated concrete with Serbian fly ash and its radiological impact. Nuccetelli C; Trevisi R; Ignjatović I; Dragaš J J Environ Radioact; 2017 Mar; 168():30-37. PubMed ID: 27686949 [TBL] [Abstract][Full Text] [Related]
33. Use of waste ash from palm oil industry in concrete. Tangchirapat W; Saeting T; Jaturapitakkul C; Kiattikomol K; Siripanichgorn A Waste Manag; 2007; 27(1):81-8. PubMed ID: 16497498 [TBL] [Abstract][Full Text] [Related]
34. Concrete Properties Comparison When Substituting a 25% Cement with Slag from Different Provenances. Parron-Rubio ME; Perez-García F; Gonzalez-Herrera A; Rubio-Cintas MD Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29914191 [TBL] [Abstract][Full Text] [Related]
35. Mock-up performance evaluation study for crack reduction of blast furnace slag powder concrete mixed with expansive and swelling admixtures. Yoon S; Choi W; Jeon C Sci Rep; 2024 Jan; 14(1):2399. PubMed ID: 38287187 [TBL] [Abstract][Full Text] [Related]
36. Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution. Dakhane A; Madavarapu SB; Marzke R; Neithalath N Appl Spectrosc; 2017 Aug; 71(8):1795-1807. PubMed ID: 28452567 [TBL] [Abstract][Full Text] [Related]
37. Hydraulic activity of cement mixed with slag from vitrified solid waste incinerator fly ash. Lin KL; Wang KS; Tzeng BY; Lin CY Waste Manag Res; 2003 Dec; 21(6):567-74. PubMed ID: 14986718 [TBL] [Abstract][Full Text] [Related]
38. Durability of recycled aggregate concrete using pozzolanic materials. Ann KY; Moon HY; Kim YB; Ryou J Waste Manag; 2008; 28(6):993-9. PubMed ID: 17475467 [TBL] [Abstract][Full Text] [Related]
39. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches. Gorzsás A; Sundberg B Methods Mol Biol; 2014; 1062():317-52. PubMed ID: 24057375 [TBL] [Abstract][Full Text] [Related]
40. Utilization of Waste Polysilicon Sludge in Concrete. Qudoos A; Jeon IK; Kim SS; Lee JB; Kim HG Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31935986 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]