These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 27059447)
1. Edible coating composed of chitosan and Salvia fruticosa Mill. extract for the control of grey mould of table grapes. Kanetis L; Exarchou V; Charalambous Z; Goulas V J Sci Food Agric; 2017 Jan; 97(2):452-460. PubMed ID: 27059447 [TBL] [Abstract][Full Text] [Related]
2. HPLC-SPE-NMR characterization of major metabolites in Salvia fruticosa Mill. extract with antifungal potential: relevance of carnosic acid, carnosol, and hispidulin. Exarchou V; Kanetis L; Charalambous Z; Apers S; Pieters L; Gekas V; Goulas V J Agric Food Chem; 2015 Jan; 63(2):457-63. PubMed ID: 25537192 [TBL] [Abstract][Full Text] [Related]
4. Efficacy of the application of a coating composed of chitosan and Origanum vulgare L. essential oil to control Rhizopus stolonifer and Aspergillus niger in grapes (Vitis labrusca L.). dos Santos NS; Athayde Aguiar AJ; de Oliveira CE; Veríssimo de Sales C; de Melo E Silva S; Sousa da Silva R; Stamford TC; de Souza EL Food Microbiol; 2012 Dec; 32(2):345-53. PubMed ID: 22986200 [TBL] [Abstract][Full Text] [Related]
5. Post-harvest control of gray mold in table grapes using volatile sulfur compounds from Allium sativum. Gándara-Ledezma A; Corrales-Maldonado C; Rivera-Domínguez M; Martínez-Téllez MÁ; Vargas-Arispuro I J Sci Food Agric; 2015 Feb; 95(3):497-503. PubMed ID: 24862582 [TBL] [Abstract][Full Text] [Related]
6. Effects of chitosan from Cunninghamella elegans on virulence of post-harvest pathogenic fungi in table grapes (Vitis labrusca L.). de Oliveira CE; Magnani M; de Sales CV; de Souza Pontes AL; Campos-Takaki GM; Stamford TC; de Souza EL Int J Food Microbiol; 2014 Feb; 171():54-61. PubMed ID: 24321603 [TBL] [Abstract][Full Text] [Related]
7. Inhibitory effect of boron against Botrytis cinerea on table grapes and its possible mechanisms of action. Qin G; Zong Y; Chen Q; Hua D; Tian S Int J Food Microbiol; 2010 Mar; 138(1-2):145-50. PubMed ID: 20060611 [TBL] [Abstract][Full Text] [Related]
8. Synergistic effect of a novel chitosan/silica nanocomposites-based formulation against gray mold of table grapes and its possible mode of action. Youssef K; de Oliveira AG; Tischer CA; Hussain I; Roberto SR Int J Biol Macromol; 2019 Dec; 141():247-258. PubMed ID: 31476398 [TBL] [Abstract][Full Text] [Related]
9. Use of biocontrol agents and botanicals in integrated management of Botrytis cinerea in table grape vineyards. Rotolo C; De Miccolis Angelini RM; Dongiovanni C; Pollastro S; Fumarola G; Di Carolo M; Perrelli D; Natale P; Faretra F Pest Manag Sci; 2018 Mar; 74(3):715-725. PubMed ID: 29044981 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl. Muñoz Z; Moret A Pest Manag Sci; 2010 Sep; 66(9):974-9. PubMed ID: 20730989 [TBL] [Abstract][Full Text] [Related]
11. Pre- and postharvest chitosan coatings extend the physicochemical and bioactive qualities of minimally processed 'Crimson Seedless' grapes during cold storage. Sabir FK; Unal S; Aydın S; Sabir A J Sci Food Agric; 2024 Oct; 104(13):7834-7842. PubMed ID: 38790142 [TBL] [Abstract][Full Text] [Related]
12. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines. Edder P; Ortelli D; Viret O; Cognard E; De Montmollin A; Zali O Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943 [TBL] [Abstract][Full Text] [Related]
13. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Zhang H; Godana EA; Sui Y; Yang Q; Zhang X; Zhao L Crit Rev Microbiol; 2020 Aug; 46(4):450-462. PubMed ID: 32730726 [TBL] [Abstract][Full Text] [Related]
14. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Xu D; Deng Y; Xi P; Yu G; Wang Q; Zeng Q; Jiang Z; Gao L Food Chem; 2019 Jul; 286():226-233. PubMed ID: 30827600 [TBL] [Abstract][Full Text] [Related]
15. Effects of post-harvest treatment using chitosan from Mucor circinelloides on fungal pathogenicity and quality of table grapes during storage. de Oliveira CE; Magnani M; de Sales CV; Pontes AL; Campos-Takaki GM; Stamford TC; de Souza EL Food Microbiol; 2014 Dec; 44():211-9. PubMed ID: 25084665 [TBL] [Abstract][Full Text] [Related]
16. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Konuk Takma D; Korel F Food Chem; 2017 Apr; 221():187-195. PubMed ID: 27979175 [TBL] [Abstract][Full Text] [Related]
17. Control of postharvest grey mould decay of nectarine by tea polyphenol combined with tea saponin. Yang XP; Jiang XD; Chen JJ; Zhang SS Lett Appl Microbiol; 2013 Dec; 57(6):502-9. PubMed ID: 23909749 [TBL] [Abstract][Full Text] [Related]
18. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes. Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220 [TBL] [Abstract][Full Text] [Related]
19. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S; Suzuki S; Takayanagi T Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204 [TBL] [Abstract][Full Text] [Related]
20. Effect of acetic acid repeated treatments on post-harvest quality of "Taloppo" table grape. Venditti T; Dore A; Molinu MG; D'Hallewin G Commun Agric Appl Biol Sci; 2012; 77(3):219-24. PubMed ID: 23878976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]