BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1000 related articles for article (PubMed ID: 27059497)

  • 1. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.
    Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B
    J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblast-derived extracellular matrix coated PLLA/silk fibroin composite nanofibers promote osteogenic differentiation of bone mesenchymal stem cells.
    Wu Y; Zhou L; Li Y; Lou X
    J Biomed Mater Res A; 2022 Mar; 110(3):525-534. PubMed ID: 34494712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393.
    Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G
    Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold.
    Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH
    Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the potential of kartogenin encapsulated poly(L-lactic acid-co-caprolactone)/collagen nanofibers for tracheal cartilage regeneration.
    Yin H; Wang J; Gu Z; Feng W; Gao M; Wu Y; Zheng H; He X; Mo X
    J Biomater Appl; 2017 Sep; 32(3):331-341. PubMed ID: 28658997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun fibrous silk fibroin/poly(L-lactic acid) scaffold for cartilage tissue engineering.
    Liu W; Li Z; Zheng L; Zhang X; Liu P; Yang T; Han B
    Tissue Eng Regen Med; 2016 Oct; 13(5):516-526. PubMed ID: 30603432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermolecular interactions between B. mori silk fibroin and poly(l-lactic acid) in electrospun composite nanofibrous scaffolds.
    Taddei P; Tozzi S; Zuccheri G; Martinotti S; Ranzato E; Chiono V; Carmagnola I; Tsukada M
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):777-787. PubMed ID: 27770955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering.
    Chen JP; Su CH
    Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of silk fibroin blended P(LLA-CL) nanofibrous scaffolds for tissue engineering.
    Zhang K; Wang H; Huang C; Su Y; Mo X; Ikada Y
    J Biomed Mater Res A; 2010 Jun; 93(3):984-93. PubMed ID: 19722280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically improved nanofibrous scaffolds for cardiac tissue engineering.
    Bhaarathy V; Venugopal J; Gandhimathi C; Ponpandian N; Mangalaraj D; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():268-77. PubMed ID: 25280706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun poly (ɛ-caprolactone)/silk fibroin core-sheath nanofibers and their potential applications in tissue engineering and drug release.
    Li L; Li H; Qian Y; Li X; Singh GK; Zhong L; Liu W; Lv Y; Cai K; Yang L
    Int J Biol Macromol; 2011 Aug; 49(2):223-32. PubMed ID: 21565216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive collagen-grafted poly-L-lactic acid nanofibrous membrane for cartilage tissue engineering.
    Chen JP; Li SF; Chiang YP
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5393-8. PubMed ID: 21125905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.
    Shao W; He J; Han Q; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():599-610. PubMed ID: 27287159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-polylactic acid porous microspheres enhance the mechanical properties and in vivo stability of degummed silk/silk fibroin/gelatin scaffold.
    Li T; Liu B; Jiang Y; Lou Y; Chen K; Zhang D
    Biomed Mater; 2020 Dec; 16(1):015025. PubMed ID: 33181491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.
    Gui-Bo Y; You-Zhu Z; Shu-Dong W; De-Bing S; Zhi-Hui D; Wei-Guo F
    J Biomed Mater Res A; 2010 Apr; 93(1):158-63. PubMed ID: 19536837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size.
    Conoscenti G; Schneider T; Stoelzel K; Carfì Pavia F; Brucato V; Goegele C; La Carrubba V; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():449-459. PubMed ID: 28866186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocomposite nanofibrous strategies for the controlled release of biomolecules for skin tissue regeneration.
    Gandhimathi C; Venugopal JR; Bhaarathy V; Ramakrishna S; Kumar SD
    Int J Nanomedicine; 2014; 9():4709-22. PubMed ID: 25336949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.