BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

996 related articles for article (PubMed ID: 27059497)

  • 21. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage.
    Sawatjui N; Limpaiboon T; Schrobback K; Klein T
    J Tissue Eng Regen Med; 2018 May; 12(5):1220-1229. PubMed ID: 29489056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton's jelly of human umbilical cord.
    Wang J; Sun B; Tian L; He X; Gao Q; Wu T; Ramakrishna S; Zheng J; Mo X
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):637-645. PubMed ID: 27770937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of inherent RGD containing silk fibroin-poly (Є-caprolactone) nanofibrous matrix for bone tissue engineering.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Bhattacharya D; Maiti TK; Kundu SC
    Cell Tissue Res; 2016 Feb; 363(2):525-40. PubMed ID: 26174955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.
    Bhattacharjee P; Kundu B; Naskar D; Maiti TK; Bhattacharya D; Kundu SC
    Biopolymers; 2015 May; 103(5):271-84. PubMed ID: 25418966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.
    Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application.
    Singh BN; Panda NN; Mund R; Pramanik K
    Carbohydr Polym; 2016 Oct; 151():335-347. PubMed ID: 27474575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor.
    Ma Z; Gao C; Gong Y; Shen J
    Biomaterials; 2005 Apr; 26(11):1253-9. PubMed ID: 15475055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrospun homogeneous silk fibroin/poly (ɛ-caprolactone) nanofibrous scaffolds by addition of acetic acid for tissue engineering.
    Zhu J; Luo J; Zhao X; Gao J; Xiong J
    J Biomater Appl; 2016 Sep; 31(3):421-37. PubMed ID: 27422715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced chondrogenic differentiation of stem cells using an optimized electrospun nanofibrous PLLA/PEG scaffolds loaded with glucosamine.
    Mirzaei S; Karkhaneh A; Soleimani M; Ardeshirylajimi A; Seyyed Zonouzi H; Hanaee-Ahvaz H
    J Biomed Mater Res A; 2017 Sep; 105(9):2461-2474. PubMed ID: 28481047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constructing high-strength nano-micro fibrous woven scaffolds with native-like anisotropic structure and immunoregulatory function for tendon repair and regeneration.
    Cai J; Liu J; Xu J; Li Y; Zheng T; Zhang T; Han K; Chen S; Jiang J; Wu S; Zhao J
    Biofabrication; 2023 Jan; 15(2):. PubMed ID: 36608336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro study of cartilage tissue engineering using human adipose-derived stem cells induced by platelet-rich plasma and cultured on silk fibroin scaffold.
    Rosadi I; Karina K; Rosliana I; Sobariah S; Afini I; Widyastuti T; Barlian A
    Stem Cell Res Ther; 2019 Dec; 10(1):369. PubMed ID: 31801639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced bone formation in electrospun poly(L-lactic-co-glycolic acid)-tussah silk fibroin ultrafine nanofiber scaffolds incorporated with graphene oxide.
    Shao W; He J; Sang F; Wang Q; Chen L; Cui S; Ding B
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():823-34. PubMed ID: 26952489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma.
    Barlian A; Judawisastra H; Ridwan A; Wahyuni AR; Lingga ME
    Sci Rep; 2020 Nov; 10(1):19449. PubMed ID: 33173146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 37. Tissue-engineered PLLA/gelatine nanofibrous scaffold promoting the phenotypic expression of epithelial and smooth muscle cells for urethral reconstruction.
    Liu G; Fu M; Li F; Fu W; Zhao Z; Xia H; Niu Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110810. PubMed ID: 32279818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty.
    Chen J; Yan C; Zhu M; Yao Q; Shao C; Lu W; Wang J; Mo X; Gu P; Fu Y; Fan X
    Int J Nanomedicine; 2015; 10():3337-50. PubMed ID: 26005345
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications.
    Kandhasamy S; Arthi N; Arun RP; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold.
    Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M
    Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.