These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27059703)

  • 1. Simple generalized estimating equations (GEEs) and weighted generalized estimating equations (WGEEs) in longitudinal studies with dropouts: guidelines and implementation in R.
    Salazar A; Ojeda B; Dueñas M; Fernández F; Failde I
    Stat Med; 2016 Aug; 35(19):3424-48. PubMed ID: 27059703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using generalized estimating equations and extensions in randomized trials with missing longitudinal patient reported outcome data.
    Bell ML; Horton NJ; Dhillon HM; Bray VJ; Vardy J
    Psychooncology; 2018 Sep; 27(9):2125-2131. PubMed ID: 29802657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubly robust generalized estimating equations for longitudinal data.
    Seaman S; Copas A
    Stat Med; 2009 Mar; 28(6):937-55. PubMed ID: 19153970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model selection for generalized estimating equations accommodating dropout missingness.
    Shen CW; Chen YH
    Biometrics; 2012 Dec; 68(4):1046-54. PubMed ID: 22463099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted generalized estimating equations and unified estimation for longitudinal data with nonmonotone missing data patterns.
    Liu M; Zhao Y
    Stat Med; 2022 Mar; 41(7):1148-1156. PubMed ID: 34729797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An R package for model fitting, model selection and the simulation for longitudinal data with dropout missingness.
    Xu C; Li Z; Xue Y; Zhang L; Wang M
    Commun Stat Simul Comput; 2019; 48(9):2812-2829. PubMed ID: 32346220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors related to the evolution of Health Related Quality of Life in coronary patients. A longitudinal approach using Weighted Generalized Estimating Equations with missing data.
    Salazar A; Dueñas M; Fernandez-Palacin F; Failde I
    Int J Cardiol; 2016 Nov; 223():940-946. PubMed ID: 27597157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model selection in the weighted generalized estimating equations for longitudinal data with dropout.
    Gosho M
    Biom J; 2016 May; 58(3):570-87. PubMed ID: 26509243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doubly robust and multiple-imputation-based generalized estimating equations.
    Birhanu T; Molenberghs G; Sotto C; Kenward MG
    J Biopharm Stat; 2011 Mar; 21(2):202-25. PubMed ID: 21390997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random.
    Preisser JS; Lohman KK; Rathouz PJ
    Stat Med; 2002 Oct; 21(20):3035-54. PubMed ID: 12369080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity analysis of longitudinal binary quality of life data with drop-out: an example using the EORTC QLQ-C30.
    Van Steen K; Curran D; Molenberghs G
    Stat Med; 2001 Dec; 20(24):3901-20. PubMed ID: 11782042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical and statistical issues in missing data for longitudinal patient-reported outcomes.
    Bell ML; Fairclough DL
    Stat Methods Med Res; 2014 Oct; 23(5):440-59. PubMed ID: 23427225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview of practical approaches for handling missing data in clinical trials.
    DeSouza CM; Legedza AT; Sankoh AJ
    J Biopharm Stat; 2009 Nov; 19(6):1055-73. PubMed ID: 20183464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of relative improvement due to weights within generalized estimating equations framework for incomplete clinical trials data.
    Demirtas H
    J Biopharm Stat; 2004 Nov; 14(4):1085-98. PubMed ID: 15587981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An application of maximum likelihood and generalized estimating equations to the analysis of ordinal data from a longitudinal study with cases missing at random.
    Kenward MG; Lesaffre E; Molenberghs G
    Biometrics; 1994 Dec; 50(4):945-53. PubMed ID: 7787007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical-likelihood-based criteria for model selection on marginal analysis of longitudinal data with dropout missingness.
    Chen C; Shen B; Zhang L; Xue Y; Wang M
    Biometrics; 2019 Sep; 75(3):950-965. PubMed ID: 31004449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of longitudinal binary data with missing data due to dropouts.
    Ali MW; Talukder E
    J Biopharm Stat; 2005; 15(6):993-1007. PubMed ID: 16279357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust estimation of partially linear models for longitudinal data with dropouts and measurement error.
    Qin G; Zhang J; Zhu Z; Fung W
    Stat Med; 2016 Dec; 35(29):5401-5416. PubMed ID: 27460857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of dichotomization in longitudinal data analysis: a simulation study.
    Yoo B
    Pharm Stat; 2010; 9(4):298-312. PubMed ID: 19904810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling longitudinal count data with dropouts.
    Alosh M
    Pharm Stat; 2010; 9(1):35-45. PubMed ID: 19191272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.