BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27059852)

  • 41. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation.
    Djiane J; Durand P; Kelly PA
    Endocrinology; 1977 May; 100(5):1348-56. PubMed ID: 191241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alveolar progenitor cells develop in mouse mammary glands independent of pregnancy and lactation.
    Booth BW; Boulanger CA; Smith GH
    J Cell Physiol; 2007 Sep; 212(3):729-36. PubMed ID: 17443685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of genes involved in regulation of cell turnover during milk stasis and lactation rescue in sow mammary glands.
    Theil PK; Labouriau R; Sejrsen K; Thomsen B; Sørensen MT
    J Anim Sci; 2005 Oct; 83(10):2349-56. PubMed ID: 16160046
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells.
    Ohtani Y; Yonezawa T; Song SH; Takahashi T; Ardiyanti A; Sato K; Hagino A; Roh SG; Katoh K
    Anim Sci J; 2011 Feb; 82(1):99-106. PubMed ID: 21269367
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of short day photoperiod on prolactin signaling in dry cows: a common mechanism among tissues and environments?
    Dahl GE
    J Anim Sci; 2008 Mar; 86(13 Suppl):10-4. PubMed ID: 17686892
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transferrin and prolactin transcytosis in the lactating mammary epithelial cell.
    Ollivier-Bousquet M
    J Mammary Gland Biol Neoplasia; 1998 Jul; 3(3):303-13. PubMed ID: 10819516
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of prolactin-release inhibition on milk production and mammary gland involution at drying-off in cows.
    Ollier S; Zhao X; Lacasse P
    J Dairy Sci; 2013 Jan; 96(1):335-43. PubMed ID: 23164222
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G.
    Hadsell DL; Bonnette S; George J; Torres D; Klimentidis Y; Gao S; Haney PM; Summy-Long J; Soloff MS; Parlow AF; Sirito M; Sawadogo M
    Mol Endocrinol; 2003 Nov; 17(11):2251-67. PubMed ID: 12907752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression and function of leptin and its receptor in mouse mammary gland.
    Lin Y; Li Q
    Sci China C Life Sci; 2007 Oct; 50(5):669-75. PubMed ID: 17879067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inactivation of VEGF in mammary gland epithelium severely compromises mammary gland development and function.
    Rossiter H; Barresi C; Ghannadan M; Gruber F; Mildner M; Födinger D; Tschachler E
    FASEB J; 2007 Dec; 21(14):3994-4004. PubMed ID: 17625068
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nuclear factor 1-C2 is regulated by prolactin and shows a distinct expression pattern in the mouse mammary epithelial cells during development.
    Johansson EM; Kannius-Janson M; Gritli-Linde A; Bjursell G; Nilsson J
    Mol Endocrinol; 2005 Apr; 19(4):992-1003. PubMed ID: 15637146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lactogenic hormones stimulate expression of lipogenic genes but not glucose transporters in bovine mammary gland.
    Shao Y; Wall EH; McFadden TB; Misra Y; Qian X; Blauwiekel R; Kerr D; Zhao FQ
    Domest Anim Endocrinol; 2013 Feb; 44(2):57-69. PubMed ID: 23063409
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Developmental stage determines the effects of MYC in the mammary epithelium.
    Blakely CM; Sintasath L; D'Cruz CM; Hahn KT; Dugan KD; Belka GK; Chodosh LA
    Development; 2005 Mar; 132(5):1147-60. PubMed ID: 15689376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The milk line - where mammary gland meets mathematics.
    Wessel GM
    Mol Reprod Dev; 2016 Jan; 83(1):1. PubMed ID: 26754919
    [No Abstract]   [Full Text] [Related]  

  • 55. Mammary cell number, proliferation, and apoptosis during a bovine lactation: relation to milk production and effect of bST.
    Capuco AV; Wood DL; Baldwin R; Mcleod K; Paape MJ
    J Dairy Sci; 2001 Oct; 84(10):2177-87. PubMed ID: 11699449
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous lactation effects on mammary remodeling during late gestation and lactation in dairy goats.
    Safayi S; Theil PK; Hou L; Engbaek M; Nørgaard JV; Sejrsen K; Nielsen MO
    J Dairy Sci; 2010 Jan; 93(1):203-17. PubMed ID: 20059919
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lactation persistency: insights from mammary cell proliferation studies.
    Capuco AV; Ellis SE; Hale SA; Long E; Erdman RA; Zhao X; Paape MJ
    J Anim Sci; 2003; 81 Suppl 3():18-31. PubMed ID: 15000403
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells.
    Chat S; Layani S; Mahaut C; Henry C; Chanat E; Truchet S
    Eur J Cell Biol; 2011 May; 90(5):401-13. PubMed ID: 21354649
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A common genetic variant in zinc transporter ZnT2 (Thr288Ser) is present in women with low milk volume and alters lysosome function and cell energetics.
    Rivera OC; Geddes DT; Barber-Zucker S; Zarivach R; Gagnon A; Soybel DI; Kelleher SL
    Am J Physiol Cell Physiol; 2020 Jun; 318(6):C1166-C1177. PubMed ID: 32320289
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Comparative Review of the Cell Biology, Biochemistry, and Genetics of Lactose Synthesis.
    Sadovnikova A; Garcia SC; Hovey RC
    J Mammary Gland Biol Neoplasia; 2021 Jun; 26(2):181-196. PubMed ID: 34125364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.