BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27059892)

  • 1. Comparison between Hodgkin-Huxley and Markov formulations of cardiac ion channels.
    Carbonell-Pascual B; Godoy E; Ferrer A; Romero L; Ferrero JM
    J Theor Biol; 2016 Jun; 399():92-102. PubMed ID: 27059892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined action potential- and dynamic-clamp for accurate computational modelling of the cardiac IKr current.
    Bartolucci C; Altomare C; Bennati M; Furini S; Zaza A; Severi S
    J Mol Cell Cardiol; 2015 Feb; 79():187-94. PubMed ID: 25446181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the venom of the spider Ornithoctonus hainana on neonatal rat ventricular myocytes cellular and ionic electrophysiology.
    Zhang Y; Liu J; Liu Z; Wang M; Wang J; Lu S; Zhu L; Zeng X; Liang S
    Toxicon; 2014 Sep; 87():104-12. PubMed ID: 24930961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Squid to Mammals with the HH Model through the Nav Channels' Half-Activation-Voltage Parameter.
    Krouchev NI; Rattay F; Sawan M; Vinet A
    PLoS One; 2015; 10(12):e0143570. PubMed ID: 26629692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium.
    Szentadrassy N; Banyasz T; Biro T; Szabo G; Toth BI; Magyar J; Lazar J; Varro A; Kovacs L; Nanasi PP
    Cardiovasc Res; 2005 Mar; 65(4):851-60. PubMed ID: 15721865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Markov models for ion channels: versatility versus identifiability and speed.
    Fink M; Noble D
    Philos Trans A Math Phys Eng Sci; 2009 Jun; 367(1896):2161-79. PubMed ID: 19414451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational biology in the study of cardiac ion channels and cell electrophysiology.
    Rudy Y; Silva JR
    Q Rev Biophys; 2006 Feb; 39(1):57-116. PubMed ID: 16848931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of wild-type and mutant human cardiac Na+ current.
    Vecchietti S; Rivolta I; Severi S; Napolitano C; Priori SG; Cavalcanti S
    Med Biol Eng Comput; 2006 Mar; 44(1-2):35-44. PubMed ID: 16929919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic differential equation models for ion channel noise in Hodgkin-Huxley neurons.
    Goldwyn JH; Imennov NS; Famulare M; Shea-Brown E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041908. PubMed ID: 21599202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulations of the cardiac action potential based on the Hodgkin-Huxley kinetics with the use of Microsoft Excel spreadsheets.
    Wu SN
    Chin J Physiol; 2004 Mar; 47(1):15-22. PubMed ID: 15239590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New studies of the excitatory sodium currents in heart muscle.
    Fozzard HA; January CT; Makielski JC
    Circ Res; 1985 Apr; 56(4):475-85. PubMed ID: 2579746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling ion channel dynamics through reflected stochastic differential equations.
    Dangerfield CE; Kay D; Burrage K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051907. PubMed ID: 23004788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment.
    Booth V; Rinzel J; Kiehn O
    J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling between charge movement and pore opening in voltage dependent potassium channels.
    Stefani E
    Medicina (B Aires); 1995; 55(5 Pt 2):591-9. PubMed ID: 8842189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of models of Na+ channel gating for mammalian and invertebrate nonmyelinated axons: relationship to energy efficient action potentials.
    Clay JR
    Prog Biophys Mol Biol; 2013 Jan; 111(1):1-7. PubMed ID: 22922062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring voltage-dependent ion channels in silico by hysteretic conductance.
    Andersson T
    Math Biosci; 2010 Jul; 226(1):16-27. PubMed ID: 20303991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Parsimonious Model of the Rabbit Action Potential Elucidates the Minimal Physiological Requirements for Alternans and Spiral Wave Breakup.
    Gray RA; Pathmanathan P
    PLoS Comput Biol; 2016 Oct; 12(10):e1005087. PubMed ID: 27749895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and simulation of ion channels and action potentials in taste receptor cells.
    Chen P; Liu XD; Zhang W; Zhou J; Wang P; Yang W; Luo J
    Sci China C Life Sci; 2009 Nov; 52(11):1036-47. PubMed ID: 19937202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The what and where of adding channel noise to the Hodgkin-Huxley equations.
    Goldwyn JH; Shea-Brown E
    PLoS Comput Biol; 2011 Nov; 7(11):e1002247. PubMed ID: 22125479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.