These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 27060124)
1. Cationized Magnetoferritin Enables Rapid Labeling and Concentration of Gram-Positive and Gram-Negative Bacteria in Magnetic Cell Separation Columns. Correia Carreira S; Spencer J; Schwarzacher W; Seddon AM Appl Environ Microbiol; 2016 Jun; 82(12):3599-3604. PubMed ID: 27060124 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells. Correia Carreira S; Armstrong JP; Okuda M; Seddon AM; Perriman AW; Schwarzacher W J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060256 [TBL] [Abstract][Full Text] [Related]
3. Development of a magnetic separation method to capture sepsis associated bacteria in blood. Lopes ALK; Cardoso J; Dos Santos FRCC; Silva ACG; Stets MI; Zanchin NIT; Soares MJ; Krieger MA J Microbiol Methods; 2016 Sep; 128():96-101. PubMed ID: 27432342 [TBL] [Abstract][Full Text] [Related]
4. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography. Che Y; Xu Y; Wang R; Chen L Anal Bioanal Chem; 2017 Aug; 409(20):4709-4718. PubMed ID: 28664335 [TBL] [Abstract][Full Text] [Related]
5. Two-step labeling of Staphylococcus aureus with Lysostaphin-Azide and DIBO-Alexa using click chemistry. Potapova I; Eglin D; Laschke MW; Bischoff M; Richards RG; Moriarty TF J Microbiol Methods; 2013 Jan; 92(1):90-8. PubMed ID: 23159797 [TBL] [Abstract][Full Text] [Related]
6. Rapid separations of nile blue stained microorganisms as cationic charged species by chip-CE with LIF. Nuchtavorn N; Bek F; Macka M; Suntornsuk W; Suntornsuk L Electrophoresis; 2012 May; 33(9-10):1421-6. PubMed ID: 22648810 [TBL] [Abstract][Full Text] [Related]
7. Capture antibody targeted fluorescence in situ hybridization (CAT-FISH): dual labeling allows for increased specificity in complex samples. Stroot JM; Leach KM; Stroot PG; Lim DV J Microbiol Methods; 2012 Feb; 88(2):275-84. PubMed ID: 22212757 [TBL] [Abstract][Full Text] [Related]
8. Dual-recognition detection of Staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Yang S; Ouyang H; Su X; Gao H; Kong W; Wang M; Shu Q; Fu Z Biosens Bioelectron; 2016 Apr; 78():174-180. PubMed ID: 26606309 [TBL] [Abstract][Full Text] [Related]
9. Rapid identification of bacterial isolates using microfluidic adaptive channels and multiplexed fluorescence microscopy. Chatzimichail S; Turner P; Feehily C; Farrar A; Crook D; Andersson M; Oakley S; Barrett L; El Sayyed H; Kyropoulos J; Nellåker C; Stoesser N; Kapanidis AN Lab Chip; 2024 Oct; 24(20):4843-4858. PubMed ID: 39291847 [TBL] [Abstract][Full Text] [Related]
10. Integration of microfiltration and anion-exchange nanoparticles-based magnetic separation with MALDI mass spectrometry for bacterial analysis. Li S; Guo Z; Liu Y; Yang Z; Hui HK Talanta; 2009 Nov; 80(1):313-20. PubMed ID: 19782231 [TBL] [Abstract][Full Text] [Related]
11. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Gu H; Ho PL; Tsang KW; Wang L; Xu B J Am Chem Soc; 2003 Dec; 125(51):15702-3. PubMed ID: 14677934 [TBL] [Abstract][Full Text] [Related]
12. Use of magnetic beads for Gram staining of bacteria in aqueous suspension. Yazdankhah SP; Sørum H; Larsen HJ; Gogstad G J Microbiol Methods; 2001 Dec; 47(3):369-71. PubMed ID: 11714527 [TBL] [Abstract][Full Text] [Related]
14. Efficient bacterial capture with amino acid modified magnetic nanoparticles. Jin Y; Liu F; Shan C; Tong M; Hou Y Water Res; 2014 Mar; 50():124-34. PubMed ID: 24370656 [TBL] [Abstract][Full Text] [Related]
16. Simple and rapid detection of bacteria using a nuclease-responsive DNA probe. Lee KJ; Lee WS; Hwang A; Moon J; Kang T; Park K; Jeong J Analyst; 2017 Dec; 143(1):332-338. PubMed ID: 29210381 [TBL] [Abstract][Full Text] [Related]
17. Using Positively Charged Magnetic Nanoparticles to Capture Bacteria at Ultralow Concentration. Li Z; Ma J; Ruan J; Zhuang X Nanoscale Res Lett; 2019 Jun; 14(1):195. PubMed ID: 31165285 [TBL] [Abstract][Full Text] [Related]
18. High-efficient separation of deoxyribonucleic acid from pathogenic bacteria by hedgehog-inspired magnetic nanoparticles microextraction. Shi YJ; Che YN; Zhao YM; Ran RX; Zhao YQ; Yu SS; Chen MY; Dong LY; Zhao ZY; Wang XH J Chromatogr A; 2024 Jun; 1724():464923. PubMed ID: 38653039 [TBL] [Abstract][Full Text] [Related]
19. Conductometric sensor for viable Escherichia coli and Staphylococcus aureus based on magnetic analyte separation via aptamer. Zhang X; Wang X; Yang Q; Jiang X; Li Y; Zhao J; Qu K Mikrochim Acta; 2019 Dec; 187(1):43. PubMed ID: 31832780 [TBL] [Abstract][Full Text] [Related]
20. Transmutation of Personal Glucose Meters into Portable and Highly Sensitive Microbial Pathogen Detection Platform. Wang Z; Chen Z; Gao N; Ren J; Qu X Small; 2015 Oct; 11(37):4970-5. PubMed ID: 26153225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]