BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27060408)

  • 1. IDPT: Insights into potential intrinsically disordered proteins through transcriptomic analysis of genes for prostate carcinoma epigenetic data.
    Mallik S; Sen S; Maulik U
    Gene; 2016 Jul; 586(1):87-96. PubMed ID: 27060408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Statistical Approach to Detect Intrinsically Disordered Proteins Associated with Uterine Leiomyoma.
    Maulik U; Uversky VN; Sen S
    Protein Pept Lett; 2018; 25(5):483-491. PubMed ID: 29577850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The gene expression profiling of hepatocellular carcinoma by a network analysis approach shows a dominance of intrinsically disordered proteins (IDPs) between hub nodes.
    Singh S; Colonna G; Di Bernardo G; Bergantino F; Cammarota M; Castello G; Costantini S
    Mol Biosyst; 2015 Nov; 11(11):2933-45. PubMed ID: 26267014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MiRNA-TF-gene network analysis through ranking of biomolecules for multi-informative uterine leiomyoma dataset.
    Mallik S; Maulik U
    J Biomed Inform; 2015 Oct; 57():308-19. PubMed ID: 26297985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular signaling involving intrinsically disordered proteins in prostate cancer.
    Russo A; Manna SL; Novellino E; Malfitano AM; Marasco D
    Asian J Androl; 2016; 18(5):673-81. PubMed ID: 27212129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Disordered Proteins in Prostate Cancer.
    Uversky VN; Na I; Landau KS; Schenck RO
    Curr Protein Pept Sci; 2017; 18(5):453-481. PubMed ID: 27804860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin.
    Lee SE; Kim SJ; Yoon HJ; Yu SY; Yang H; Jeong SI; Hwang SY; Park CS; Park YS
    J Pineal Res; 2013 Jan; 54(1):80-8. PubMed ID: 22856590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics in prostate cancer: biologic and clinical relevance.
    Jerónimo C; Bastian PJ; Bjartell A; Carbone GM; Catto JW; Clark SJ; Henrique R; Nelson WG; Shariat SF
    Eur Urol; 2011 Oct; 60(4):753-66. PubMed ID: 21719191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies.
    Shames DS; Girard L; Gao B; Sato M; Lewis CM; Shivapurkar N; Jiang A; Perou CM; Kim YH; Pollack JR; Fong KM; Lam CL; Wong M; Shyr Y; Nanda R; Olopade OI; Gerald W; Euhus DM; Shay JW; Gazdar AF; Minna JD
    PLoS Med; 2006 Dec; 3(12):e486. PubMed ID: 17194187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unfoldomics of prostate cancer: on the abundance and roles of intrinsically disordered proteins in prostate cancer.
    Landau KS; Na I; Schenck RO; Uversky VN
    Asian J Androl; 2016; 18(5):662-72. PubMed ID: 27453073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting TF-miRNA-gene network based modules for 5hmC and 5mC brain samples: a intra- and inter-species case-study between human and rhesus.
    Maulik U; Sen S; Mallik S; Bandyopadhyay S
    BMC Genet; 2018 Jan; 19(1):9. PubMed ID: 29357837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome network analysis reveals candidate genes for renal cell carcinoma.
    Zhai W; Xu YF; Liu M; Zheng JH
    J Cancer Res Ther; 2012; 8(1):28-33. PubMed ID: 22531510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into human intrinsically disordered proteins from their gene expression profile.
    Panda A; Acharya D; Chandra Ghosh T
    Mol Biosyst; 2017 Nov; 13(12):2521-2530. PubMed ID: 29051952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer.
    Schayek H; Bentov I; Jacob-Hirsch J; Yeung C; Khanna C; Helman LJ; Plymate SR; Werner H
    Horm Metab Res; 2012 Jun; 44(7):511-9. PubMed ID: 22495974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MicroRNA expression profiling in prostate cancer.
    Porkka KP; Pfeiffer MJ; Waltering KK; Vessella RL; Tammela TL; Visakorpi T
    Cancer Res; 2007 Jul; 67(13):6130-5. PubMed ID: 17616669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic and bioinformatic analysis of a nuclear intrinsically disordered proteome.
    Skupien-Rabian B; Jankowska U; Swiderska B; Lukasiewicz S; Ryszawy D; Dziedzicka-Wasylewska M; Kedracka-Krok S
    J Proteomics; 2016 Jan; 130():76-84. PubMed ID: 26376097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic plasticity in prostate cancer: role of intrinsically disordered proteins.
    Mooney SM; Jolly MK; Levine H; Kulkarni P
    Asian J Androl; 2016; 18(5):704-10. PubMed ID: 27427552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of DNA methylation in lung cancer.
    Li B; Lu Q; Song ZG; Yang L; Jin H; Li ZG; Zhao TJ; Bai YF; Zhu J; Chen HZ; Xu ZY
    Eur Rev Med Pharmacol Sci; 2013 May; 17(9):1191-7. PubMed ID: 23690188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide methylation analysis identifies involvement of TNF-α mediated cancer pathways in prostate cancer.
    Kim SJ; Kelly WK; Fu A; Haines K; Hoffman A; Zheng T; Zhu Y
    Cancer Lett; 2011 Mar; 302(1):47-53. PubMed ID: 21237555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.
    Dobosy JR; Roberts JL; Fu VX; Jarrard DF
    J Urol; 2007 Mar; 177(3):822-31. PubMed ID: 17296351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.