BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27060884)

  • 21. Metal-free catalytic hydrogenation of polar substrates by frustrated Lewis pairs.
    Stephan DW; Greenberg S; Graham TW; Chase P; Hastie JJ; Geier SJ; Farrell JM; Brown CC; Heiden ZM; Welch GC; Ullrich M
    Inorg Chem; 2011 Dec; 50(24):12338-48. PubMed ID: 21534552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hexacoordinated tin complexes catalyse imine hydrogenation with H
    Žáková A; Saha P; Paparakis A; Zábranský M; Gastelu G; Kukla J; Uranga JG; Hulla M
    Chem Commun (Camb); 2024 Mar; 60(24):3287-3290. PubMed ID: 38421350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO
    Das S; Turnell-Ritson RC; Dyson PJ; Corminboeuf C
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202208987. PubMed ID: 36112755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frustrated Lewis Pairs: Bonding, Reactivity, and Applications.
    Ghara M; Mondal H; Pal R; Chattaraj PK
    J Phys Chem A; 2023 Jun; 127(21):4561-4582. PubMed ID: 37216335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frustrated Lewis Pairs: from dihydrogen activation to asymmetric catalysis.
    Chen D; Klankermayer J
    Top Curr Chem; 2013; 334():1-26. PubMed ID: 23408275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expanding the scope of metal-free catalytic hydrogenation through frustrated Lewis pair design.
    Eros G; Mehdi H; Pápai I; Rokob TA; Király P; Tárkányi G; Soós T
    Angew Chem Int Ed Engl; 2010 Sep; 49(37):6559-63. PubMed ID: 20549755
    [No Abstract]   [Full Text] [Related]  

  • 27. Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal-Organic Frameworks.
    Niu Z; Zhang W; Lan PC; Aguila B; Ma S
    Angew Chem Int Ed Engl; 2019 May; 58(22):7420-7424. PubMed ID: 30946520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen activation using a novel tribenzyltin Lewis acid.
    Cooper RT; Sapsford JS; Turnell-Ritson RC; Hyon DH; White AJP; Ashley AE
    Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2101):. PubMed ID: 28739966
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frustrated Lewis Acid-Base-Pair-Catalyzed Amine-Borane Dehydrogenation.
    Bhattacharjee I; Bhunya S; Paul A
    Inorg Chem; 2020 Jan; 59(2):1046-1056. PubMed ID: 31909996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Frustrated Lewis Pair Catalyzed Dehydrogenative Oxidation of Indolines and Other Heterocycles.
    Maier AF; Tussing S; Schneider T; Flörke U; Qu ZW; Grimme S; Paradies J
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12219-23. PubMed ID: 27594431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile Protocol for Water-Tolerant "Frustrated Lewis Pair"-Catalyzed Hydrogenation.
    Scott DJ; Simmons TR; Lawrence EJ; Wildgoose GG; Fuchter MJ; Ashley AE
    ACS Catal; 2015 Sep; 5(9):5540-5544. PubMed ID: 26523238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing effective 'frustrated Lewis pair' hydrogenation catalysts.
    Scott DJ; Fuchter MJ; Ashley AE
    Chem Soc Rev; 2017 Oct; 46(19):5689-5700. PubMed ID: 28692084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophilic Phosphonium Cation-Mediated Phosphane Oxide Reduction Using Oxalyl Chloride and Hydrogen.
    Stepen AJ; Bursch M; Grimme S; Stephan DW; Paradies J
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15253-15256. PubMed ID: 30230149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Halogenated triphenylgallium and -indium in frustrated Lewis pair activations and hydrogenation catalysis.
    Xu M; Possart J; Waked AE; Roy J; Uhl W; Stephan DW
    Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2101):. PubMed ID: 28739969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combined "electrochemical-frustrated lewis pair" approach to hydrogen activation: surface catalytic effects at platinum electrodes.
    Lawrence EJ; Blagg RJ; Hughes DL; Ashley AE; Wildgoose GG
    Chemistry; 2015 Jan; 21(2):900-6. PubMed ID: 25382457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Versatile Catalytic Hydrogenation Using A Simple Tin(IV) Lewis Acid.
    Scott DJ; Phillips NA; Sapsford JS; Deacy AC; Fuchter MJ; Ashley AE
    Angew Chem Int Ed Engl; 2016 Nov; 55(47):14738-14742. PubMed ID: 27774711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A thermodynamic and kinetic study of the heterolytic activation of hydrogen by frustrated borane-amine Lewis pairs.
    Karkamkar A; Parab K; Camaioni DM; Neiner D; Cho H; Nielsen TK; Autrey T
    Dalton Trans; 2013 Jan; 42(3):615-9. PubMed ID: 22996636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic insights into the full hydrogenation of 2,6-substituted pyridine catalyzed by the Lewis acid C6F5(CH2)2B(C6F5)2.
    Zhao J; Wang G; Li S
    Dalton Trans; 2015 May; 44(19):9200-8. PubMed ID: 25905499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rational Design of Main Group Metal-Embedded Nitrogen-Doped Carbon Materials as Frustrated Lewis Pair Catalysts for CO
    Zhang Y; Mo Y; Cao Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1002-1014. PubMed ID: 34935336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational design of metal-free molecules for activation of small molecules, hydrogenation, and hydroamination.
    Wang ZX; Zhao L; Lu G; Li H; Huang F
    Top Curr Chem; 2013; 332():231-66. PubMed ID: 23114498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.