BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27061095)

  • 41. Meta-GWAS Accuracy and Power (MetaGAP) Calculator Shows that Hiding Heritability Is Partially Due to Imperfect Genetic Correlations across Studies.
    de Vlaming R; Okbay A; Rietveld CA; Johannesson M; Magnusson PK; Uitterlinden AG; van Rooij FJ; Hofman A; Groenen PJ; Thurik AR; Koellinger PD
    PLoS Genet; 2017 Jan; 13(1):e1006495. PubMed ID: 28095416
    [TBL] [Abstract][Full Text] [Related]  

  • 42. On the meta-analysis of genome-wide association studies: a robust and efficient approach to combine population and family-based studies.
    Won S; Lu Q; Bertram L; Tanzi RE; Lange C
    Hum Hered; 2012; 73(1):35-46. PubMed ID: 22261799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Increasing the power of meta-analysis of genome-wide association studies to detect heterogeneous effects.
    Lee CH; Eskin E; Han B
    Bioinformatics; 2017 Jul; 33(14):i379-i388. PubMed ID: 28881976
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Meta-analysis using Dirichlet process.
    Muthukumarana S; Tiwari RC
    Stat Methods Med Res; 2016 Feb; 25(1):352-65. PubMed ID: 22802045
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identifying systematic heterogeneity patterns in genetic association meta-analysis studies.
    Magosi LE; Goel A; Hopewell JC; Farrall M;
    PLoS Genet; 2017 May; 13(5):e1006755. PubMed ID: 28459806
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Classical and Bayesian random-effects meta-analysis models with sample quality weights in gene expression studies.
    Siangphoe U; Archer KJ; Mukhopadhyay ND
    BMC Bioinformatics; 2019 Jan; 20(1):18. PubMed ID: 30626315
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Avoiding zero between-study variance estimates in random-effects meta-analysis.
    Chung Y; Rabe-Hesketh S; Choi IH
    Stat Med; 2013 Oct; 32(23):4071-89. PubMed ID: 23670939
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects.
    Aschard H; Hancock DB; London SJ; Kraft P
    Hum Hered; 2010; 70(4):292-300. PubMed ID: 21293137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.
    Zhang J; Feng JY; Ni YL; Wen YJ; Niu Y; Tamba CL; Yue C; Song Q; Zhang YM
    Heredity (Edinb); 2017 Jun; 118(6):517-524. PubMed ID: 28295030
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identifying small-effect genetic associations overlooked by the conventional fixed-effect model in a large-scale meta-analysis of coronary artery disease.
    Magosi LE; Goel A; Hopewell JC; Farrall M
    Bioinformatics; 2020 Jan; 36(2):552-557. PubMed ID: 31350884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detecting genetic interactions in pathway-based genome-wide association studies.
    Huang A; Martin ER; Vance JM; Cai X
    Genet Epidemiol; 2014 May; 38(4):300-9. PubMed ID: 24719383
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies.
    Zhu Z; Anttila V; Smoller JW; Lee PH
    PLoS One; 2018; 13(3):e0193256. PubMed ID: 29494641
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regionally Smoothed Meta-Analysis Methods for GWAS Datasets.
    Begum F; Sharker MH; Sherman SL; Tseng GC; Feingold E
    Genet Epidemiol; 2016 Feb; 40(2):154-60. PubMed ID: 26707090
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bayesian methods applied to GWAS.
    Fernando RL; Garrick D
    Methods Mol Biol; 2013; 1019():237-74. PubMed ID: 23756894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies.
    Tamba CL; Ni YL; Zhang YM
    PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. General Framework for Meta-Analysis of Haplotype Association Tests.
    Wang S; Zhao JH; An P; Guo X; Jensen RA; Marten J; Huffman JE; Meidtner K; Boeing H; Campbell A; Rice KM; Scott RA; Yao J; Schulze MB; Wareham NJ; Borecki IB; Province MA; Rotter JI; Hayward C; Goodarzi MO; Meigs JB; Dupuis J
    Genet Epidemiol; 2016 Apr; 40(3):244-52. PubMed ID: 27027517
    [TBL] [Abstract][Full Text] [Related]  

  • 57. repfdr: a tool for replicability analysis for genome-wide association studies.
    Heller R; Yaacoby S; Yekutieli D
    Bioinformatics; 2014 Oct; 30(20):2971-2. PubMed ID: 25012182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The utility of empirically assigning ancestry groups in cross-population genetic studies of addiction.
    Peterson RE; Edwards AC; Bacanu SA; Dick DM; Kendler KS; Webb BT
    Am J Addict; 2017 Aug; 26(5):494-501. PubMed ID: 28714599
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.
    Cook JP; Mahajan A; Morris AP
    Eur J Hum Genet; 2017 Feb; 25(2):240-245. PubMed ID: 27848946
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Meta-Analysis of SNP-Environment Interaction with Heterogeneity.
    Jin Q; Shi G
    Hum Hered; 2019; 84(3):117-126. PubMed ID: 31865312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.