These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27061205)

  • 1. Highly Enantioselective Fluorescent Recognition of Both Unfunctionalized and Functionalized Chiral Amines by a Facile Amide Formation from a Perfluoroalkyl Ketone.
    Wang C; Anbaei P; Pu L
    Chemistry; 2016 May; 22(21):7255-61. PubMed ID: 27061205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Highly Fluorinated Chiral Aldehyde for Enantioselective Fluorescent Recognition in a Biphasic System.
    Wang C; Wu X; Pu L
    Chemistry; 2017 Aug; 23(45):10749-10752. PubMed ID: 28675621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective Fluorescent Recognition of Amino Acids by Amide Formation: An Unusual Concentration Effect.
    Wang C; Zeng C; Zhang X; Pu L
    J Org Chem; 2017 Dec; 82(23):12669-12673. PubMed ID: 29096058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines.
    Wen K; Yu S; Huang Z; Chen L; Xiao M; Yu X; Pu L
    J Am Chem Soc; 2015 Apr; 137(13):4517-24. PubMed ID: 25790271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Determination of Concentration and Enantiomeric Composition in Fluorescent Sensing.
    Pu L
    Acc Chem Res; 2017 Apr; 50(4):1032-1040. PubMed ID: 28287702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective fluorescent recognition in the fluorous phase: enhanced reactivity and expanded chiral recognition.
    Wang C; Wu E; Wu X; Xu X; Zhang G; Pu L
    J Am Chem Soc; 2015 Mar; 137(11):3747-50. PubMed ID: 25761050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescent Recognition of 1,2-Diamines by a 1,1'-Binaphthyl-Based Trifluoromethyl Ketone.
    Xu Y; Yu S; Chen Q; Chen X; Li Y; Yu X; Pu L
    Chemistry; 2016 Aug; 22(34):12061-7. PubMed ID: 27415468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition of aliphatic diamines by 3,3'-di(trifluoroacetyl)-1,1'-bi-2-naphthol.
    Yu S; Plunkett W; Kim M; Wu E; Sabat M; Pu L
    J Org Chem; 2013 Dec; 78(24):12671-80. PubMed ID: 24283254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greatly Enhanced Fluorescence by Increasing the Structural Rigidity of an Imine: Enantioselective Recognition of 1,2-Cyclohexanediamine by a Chiral Aldehyde.
    Xu Y; Yu S; Chen Q; Chen X; Xiao M; Chen L; Yu X; Xu Y; Pu L
    Chemistry; 2016 Apr; 22(17):5963-8. PubMed ID: 26991951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Optically Active Quaternary Propargyl Amines by Highly Enantioselective Zinc/BINOL-Catalyzed Alkynylation of Ketoimines.
    Huang G; Yin Z; Zhang X
    Chemistry; 2013 Sep; 19(36):11992-8. PubMed ID: 23857799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From MonoBINOL to BisBINOL: Expanded Enantioselective Fluorescent Recognition of Amino Acids.
    Huo B; Lu K; Tian J; Zhao F; Wang Y; Yu S; Yu X; Pu L
    J Org Chem; 2021 May; 86(9):6780-6786. PubMed ID: 33900764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances of BINOL-based sensors for enantioselective fluorescence recognition.
    Yu F; Chen Y; Jiang H; Wang X
    Analyst; 2020 Oct; 145(21):6769-6812. PubMed ID: 32960189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective fluorescent recognition of mandelic acid by unsymmetrical salalen and salan sensors.
    Yang X; Liu X; Shen K; Fu Y; Zhang M; Zhu C; Cheng Y
    Org Biomol Chem; 2011 Sep; 9(17):6011-21. PubMed ID: 21743928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct enantioselective Michael addition of aldehydes to vinyl ketones catalyzed by chiral amines.
    Melchiorre P; Jørgensen KA
    J Org Chem; 2003 May; 68(11):4151-7. PubMed ID: 12762713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile and practical solvating agent for enantioselective recognition and NMR analysis of protected amines.
    Iwaniuk DP; Wolf C
    J Org Chem; 2010 Oct; 75(19):6724-7. PubMed ID: 20822120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantioselective and Chemoselective Optical Detection of Chiral Organic Compounds without Resorting to Chromatography.
    Bhushan R
    Chem Asian J; 2023 Dec; 18(24):e202300825. PubMed ID: 37906446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent Recognition of Zn
    Song T; Cao Y; Zhao G; Pu L
    Inorg Chem; 2017 Apr; 56(8):4395-4399. PubMed ID: 28345893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid optical methods for enantiomeric excess analysis: from enantioselective indicator displacement assays to exciton-coupled circular dichroism.
    Jo HH; Lin CY; Anslyn EV
    Acc Chem Res; 2014 Jul; 47(7):2212-21. PubMed ID: 24892802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.