BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27061212)

  • 1. High Performance Nonvolatile Transistor Memories Utilizing Functional Polyimide-Based Supramolecular Electrets.
    Tung WY; Li MH; Wu HC; Liu HY; Hsieh YT; Chen WC
    Chem Asian J; 2016 May; 11(10):1631-40. PubMed ID: 27061212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multilevel nonvolatile flexible organic field-effect transistor memories employing polyimide electrets with different charge-transfer effects.
    Yu AD; Tung WY; Chiu YC; Chueh CC; Liou GS; Chen WC
    Macromol Rapid Commun; 2014 Jun; 35(11):1039-45. PubMed ID: 24700508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge-Storage Aromatic Amino Compounds for Nonvolatile Organic Transistor Memory Devices.
    Zheng C; Tong T; Hu Y; Gu Y; Wu H; Wu D; Meng H; Yi M; Ma J; Gao D; Huang W
    Small; 2018 Jun; 14(25):e1800756. PubMed ID: 29806210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics.
    Kim BJ; Ko Y; Cho JH; Cho J
    Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonvolatile organic field-effect transistors memory devices using supramolecular block copolymer/functional small molecule nanocomposite electret.
    Chi HY; Hsu HW; Tung SH; Liu CL
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5663-73. PubMed ID: 25711539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends.
    Chiu YC; Chen TY; Chen Y; Satoh T; Kakuchi T; Chen WC
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12780-8. PubMed ID: 24998629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory.
    Ling H; Lin J; Yi M; Liu B; Li W; Lin Z; Xie L; Bao Y; Guo F; Huang W
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18969-77. PubMed ID: 27363281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-volatile organic transistor memory devices using the poly(4-vinylpyridine)-based supramolecular electrets.
    Chou YH; Chiu YC; Lee WY; Chen WC
    Chem Commun (Camb); 2015 Feb; 51(13):2562-4. PubMed ID: 25567112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.
    Li W; Guo F; Ling H; Liu H; Yi M; Zhang P; Wang W; Xie L; Huang W
    Small; 2018 Jan; 14(2):. PubMed ID: 29165914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic transistor memory with a charge storage molecular double-floating-gate monolayer.
    Tseng CW; Huang DC; Tao YT
    ACS Appl Mater Interfaces; 2015 May; 7(18):9767-75. PubMed ID: 25875747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory.
    Chen MN; Chang SW; Prakoso SP; Li YT; Chen KL; Chiu YC
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44656-44662. PubMed ID: 34506100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array.
    Cho I; Kim BJ; Ryu SW; Cho JH; Cho J
    Nanotechnology; 2014 Dec; 25(50):505604. PubMed ID: 25426661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving high mobility, low-voltage operating organic field-effect transistor nonvolatile memory by an ultraviolet-ozone treating ferroelectric terpolymer.
    Xiang L; Wang W; Xie W
    Sci Rep; 2016 Nov; 6():36291. PubMed ID: 27824101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.
    Li W; Guo F; Ling H; Zhang P; Yi M; Wang L; Wu D; Xie L; Huang W
    Adv Sci (Weinh); 2017 Aug; 4(8):1700007. PubMed ID: 28852619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable OFET Memories: Tuning the Morphology and the Charge-Trapping Ability of Conjugated Block Copolymers through Soft Segment Branching.
    Hsu LC; Isono T; Lin YC; Kobayashi S; Chiang YC; Jiang DH; Hung CC; Ercan E; Yang WC; Hsieh HC; Tajima K; Satoh T; Chen WC
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):2932-2943. PubMed ID: 33423476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic nonvolatile memory devices with charge trapping multilayer graphene film.
    Ji Y; Choe M; Cho B; Song S; Yoon J; Ko HC; Lee T
    Nanotechnology; 2012 Mar; 23(10):105202. PubMed ID: 22361891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Flexible Organic Nano-Floating Gate Memory Devices Functionalized with Cobalt Ferrite Nanoparticles.
    Jung JH; Kim S; Kim H; Park J; Oh JH
    Small; 2015 Oct; 11(37):4976-84. PubMed ID: 26153227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Donor-Acceptor Effect of Carbazole-Based Conjugated Polymer Electrets on Photoresponsive Flash Organic Field-Effect Transistor Memories.
    Chen CH; Wang Y; Michinobu T; Chang SW; Chiu YC; Ke CY; Liou GS
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6144-6150. PubMed ID: 31918540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonvolatile organic thin film transistor memory devices based on hybrid nanocomposites of semiconducting polymers: gold nanoparticles.
    Chang HC; Liu CL; Chen WC
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):13180-7. PubMed ID: 24224739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covalent assembly of gold nanoparticles: an application toward transistor memory.
    Gupta RK; Ying G; Srinivasan MP; Lee PS
    J Phys Chem B; 2012 Aug; 116(32):9784-90. PubMed ID: 22816559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.