These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 27061260)

  • 1. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution.
    Tan G; Sun W; Xu Y; Wang H; Xu N
    Bioresour Technol; 2016 Jul; 211():727-35. PubMed ID: 27061260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon.
    Xu X; Schierz A; Xu N; Cao X
    J Colloid Interface Sci; 2016 Feb; 463():55-60. PubMed ID: 26520810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar.
    Kong H; He J; Gao Y; Wu H; Zhu X
    J Agric Food Chem; 2011 Nov; 59(22):12116-23. PubMed ID: 21999804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of heavy metals from aqueous solution by UV-mutant Bacillus subtilis loaded on biochars derived from different stock materials.
    Wang T; Sun H; Ren X; Li B; Mao H
    Ecotoxicol Environ Saf; 2018 Feb; 148():285-292. PubMed ID: 29080526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aging effect of minerals on biochar properties and sorption capacities for atrazine and phenanthrene.
    Ren X; Wang F; Zhang P; Guo J; Sun H
    Chemosphere; 2018 Sep; 206():51-58. PubMed ID: 29730565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms.
    Oh SY; Seo YD
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):951-61. PubMed ID: 25687609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable removal of Hg(II) by sulfur-modified pine-needle biochar.
    Jeon C; Solis KL; An HR; Hong Y; Igalavithana AD; Ok YS
    J Hazard Mater; 2020 Apr; 388():122048. PubMed ID: 31955026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg
    Lyu H; Xia S; Tang J; Zhang Y; Gao B; Shen B
    J Hazard Mater; 2020 Feb; 384():121357. PubMed ID: 31630859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes.
    Li B; Yang L; Wang CQ; Zhang QP; Liu QC; Li YD; Xiao R
    Chemosphere; 2017 May; 175():332-340. PubMed ID: 28235742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood.
    Wang H; Gao B; Wang S; Fang J; Xue Y; Yang K
    Bioresour Technol; 2015 Dec; 197():356-62. PubMed ID: 26344243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution.
    Wang P; Liu X; Yu B; Wu X; Xu J; Dong F; Zheng Y
    Sci Total Environ; 2020 Feb; 702():134767. PubMed ID: 31726335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption properties of greenwaste biochar for two triazine pesticides.
    Zheng W; Guo M; Chow T; Bennett DN; Rajagopalan N
    J Hazard Mater; 2010 Sep; 181(1-3):121-6. PubMed ID: 20510513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine.
    Zhao X; Ouyang W; Hao F; Lin C; Wang F; Han S; Geng X
    Bioresour Technol; 2013 Nov; 147():338-344. PubMed ID: 23999263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dairy-manure derived biochar effectively sorbs lead and atrazine.
    Cao X; Ma L; Gao B; Harris W
    Environ Sci Technol; 2009 May; 43(9):3285-91. PubMed ID: 19534148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in atrazine and phenanthrene sorption behaviors during the aging of biochar in soils.
    Ren X; Yuan X; Sun H
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):81-90. PubMed ID: 27854057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms.
    Park JH; Wang JJ; Zhou B; Mikhael JER; DeLaune RD
    Environ Pollut; 2019 Jan; 244():627-635. PubMed ID: 30384068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy.
    Liu P; Ptacek CJ; Blowes DW; Landis RC
    J Hazard Mater; 2016 May; 308():233-42. PubMed ID: 26844404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process.
    Regmi P; Garcia Moscoso JL; Kumar S; Cao X; Mao J; Schafran G
    J Environ Manage; 2012 Oct; 109():61-9. PubMed ID: 22687632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.