These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 27061795)
1. The XRF mapping of archaeological artefacts as the key to understanding of the past. Kozak L; Niedzielski P; Jakubowski K; Michałowski A; Krzyżanowska M; Teska M; Wawrzyniak M; Kot K; Piotrowska M J Xray Sci Technol; 2016 Apr; 24(3):427-36. PubMed ID: 27061795 [TBL] [Abstract][Full Text] [Related]
2. Data from Multiple Portable XRF Units and Their Significance for Ancient Glass Studies. Yatsuk O; Ferretti M; Gorghinian A; Fiocco G; Malagodi M; Agostino A; Gulmini M Molecules; 2022 Sep; 27(18):. PubMed ID: 36144802 [TBL] [Abstract][Full Text] [Related]
3. Non-destructive spectrometry methods to study the distribution of archaeological and geological chert samples. Olivares M; Tarriño A; Murelaga X; Baceta JI; Castro K; Etxebarria N Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):492-7. PubMed ID: 19208495 [TBL] [Abstract][Full Text] [Related]
4. Combination of in situ spectroscopy and chemometric techniques to discriminate different types of Roman bricks and the influence of microclimate environment. Scatigno C; Prieto-Taboada N; García-Florentino C; Fdez-Ortiz de Vallejuelo S; Maguregui M; Madariaga JM Environ Sci Pollut Res Int; 2018 Mar; 25(7):6285-6299. PubMed ID: 29247413 [TBL] [Abstract][Full Text] [Related]
5. Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays. Bergmann U; Manning PL; Wogelius RA Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():361-89. PubMed ID: 22524223 [TBL] [Abstract][Full Text] [Related]
6. Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach. Raja Annamalai G; Ravisankar R; Rajalakshmi A; Chandrasekaran A; Rajan K Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 133():112-8. PubMed ID: 24929323 [TBL] [Abstract][Full Text] [Related]
7. Study on the impregnation of archaeological waterlogged wood with consolidation treatments using synchrotron radiation microtomography. Bugani S; Modugno F; Lucejko JJ; Giachi G; Cagno S; Cloetens P; Janssens K; Morselli L Anal Bioanal Chem; 2009 Dec; 395(7):1977-85. PubMed ID: 19760192 [TBL] [Abstract][Full Text] [Related]
8. [Criminal methods in archaeology--collaboration between Forensic Medicine Department, Pomeranian Medical University and the Archaeological Museum in Gdańsk]. Kempińska-Podhorodecka A; Knap O; Parafiniuk M Ann Acad Med Stetin; 2007; 53 Suppl 2():113-21. PubMed ID: 20143692 [TBL] [Abstract][Full Text] [Related]
9. Portable Raman, DRIFTS, and XRF Analysis to Diagnose the Conservation State of Two Wall Painting Panels from Pompeii Deposited in the Naples National Archaeological Museum (Italy). Madariaga JM; Maguregui M; Castro K; Knuutinen U; Martínez-Arkarazo I Appl Spectrosc; 2016 Jan; 70(1):137-46. PubMed ID: 26767639 [TBL] [Abstract][Full Text] [Related]
10. Microbeam synchrotron imaging of hairs from ancient Egyptian mummies. Bertrand L; Doucet J; Dumas P; Simionovici A; Tsoucaris G; Walter P J Synchrotron Radiat; 2003 Sep; 10(Pt 5):387-92. PubMed ID: 12944628 [TBL] [Abstract][Full Text] [Related]
11. Environmental Microbial Forensics and Archaeology of Past Pandemics. Fornaciari A Microbiol Spectr; 2017 Jan; 5(1):. PubMed ID: 28233511 [TBL] [Abstract][Full Text] [Related]
12. Silver coins analyses by X-ray fluorescence methods. Torrisi L; Italiano A; Cutroneo M; Gentile C; Torrisi A J Xray Sci Technol; 2013; 21(3):381-90. PubMed ID: 24004868 [TBL] [Abstract][Full Text] [Related]
13. Images of the invisible-prospection methods for the documentation of threatened archaeological sites. Neubauer W Naturwissenschaften; 2001 Jan; 88(1):13-24. PubMed ID: 11261352 [TBL] [Abstract][Full Text] [Related]
14. An investigation of nitride precipitates in archaeological iron artefacts from Poland. Kedzierski Z; Stepiński J; Zielińska-Lipiec A J Microsc; 2010 Mar; 237(3):271-4. PubMed ID: 20500379 [TBL] [Abstract][Full Text] [Related]
15. Quantitative Chemical Analysis of Archaeological Slag Material Using Handheld X-ray Fluorescence Spectrometry. Scott RB; Eekelers K; Degryse P Appl Spectrosc; 2016 Jan; 70(1):94-109. PubMed ID: 26767636 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic approaches for understanding patterns of intracemetery biological variation. Stojanowski CM; Schillaci MA Am J Phys Anthropol; 2006; Suppl 43():49-88. PubMed ID: 17103428 [TBL] [Abstract][Full Text] [Related]
17. Raman spectroscopic study on archaeological glasses in Thailand: ancient Thai glass. Won-in K; Thongkam Y; Pongkrapan S; Intarasiri S; Thongleurm C; Kamwanna T; Leelawathanasuk T; Dararutana P Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):231-5. PubMed ID: 21945350 [TBL] [Abstract][Full Text] [Related]
18. Review: ritual and interpretation in Provincial Roman cemeteries. Pearce J Britannia; 2002; 33():373-7. PubMed ID: 19681219 [No Abstract] [Full Text] [Related]
19. [Necropolis in Castellaccio, tomb n. 116]. Rapinesi IA; Ferro D Med Secoli; 2011; 23(1):307-17. PubMed ID: 21941993 [TBL] [Abstract][Full Text] [Related]
20. [The necklace from the 660 grave in Megara Iblea]. Verger S Med Secoli; 2011; 23(1):151-76. PubMed ID: 21941988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]