These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 27061963)
1. Broad-Spectrum Liquid- and Gas-Phase Decontamination of Chemical Warfare Agents by One-Dimensional Heteropolyniobates. Guo W; Lv H; Sullivan KP; Gordon WO; Balboa A; Wagner GW; Musaev DG; Bacsa J; Hill CL Angew Chem Int Ed Engl; 2016 Jun; 55(26):7403-7. PubMed ID: 27061963 [TBL] [Abstract][Full Text] [Related]
2. A Polyoxoniobate-Polyoxovanadate Double-Anion Catalyst for Simultaneous Oxidative and Hydrolytic Decontamination of Chemical Warfare Agent Simulants. Dong J; Hu J; Chi Y; Lin Z; Zou B; Yang S; Hill CL; Hu C Angew Chem Int Ed Engl; 2017 Apr; 56(16):4473-4477. PubMed ID: 28322483 [TBL] [Abstract][Full Text] [Related]
3. Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants. Zhao S; Xi H; Zuo Y; Wang Q; Wang Z; Yan Z J Hazard Mater; 2018 Feb; 344():136-145. PubMed ID: 29032094 [No Abstract] [Full Text] [Related]
4. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide. Balow RB; Lundin JG; Daniels GC; Gordon WO; McEntee M; Peterson GW; Wynne JH; Pehrsson PE ACS Appl Mater Interfaces; 2017 Nov; 9(45):39747-39757. PubMed ID: 29053242 [TBL] [Abstract][Full Text] [Related]
5. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of Dimethyl Methylphosphonate Adsorption and Decomposition on Zirconium Hydroxide Using Variable Temperature In Situ Attenuated Total Reflection Infrared Spectroscopy. Jeon S; Schweigert IV; Pehrsson PE; Balow RB ACS Appl Mater Interfaces; 2020 Apr; 12(13):14662-14671. PubMed ID: 32105054 [TBL] [Abstract][Full Text] [Related]
8. Recoverable amphiphilic polyoxoniobates catalyzing oxidative and hydrolytic decontamination of chemical warfare agent simulants in emulsion. Li X; Dong J; Liu H; Sun X; Chi Y; Hu C J Hazard Mater; 2018 Feb; 344():994-999. PubMed ID: 30216973 [TBL] [Abstract][Full Text] [Related]
9. Force Fields for Molecular Modeling of Sarin and its Simulants: DMMP and DIMP. Emelianova A; Basharova EA; Kolesnikov AL; Arribas EV; Ivanova EV; Gor GY J Phys Chem B; 2021 Apr; 125(16):4086-4098. PubMed ID: 33872511 [TBL] [Abstract][Full Text] [Related]
10. Reaction of nerve agents with phosphate buffer at pH 7. Creasy WR; Fry RA; McGarvey DJ J Phys Chem A; 2012 Jul; 116(27):7279-86. PubMed ID: 22667763 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of TiO Šťastný M; Štengl V; Henych J; Tolasz J; Kormunda M; Ederer J; Issa G; Janoš P RSC Adv; 2020 May; 10(33):19542-19552. PubMed ID: 35515455 [TBL] [Abstract][Full Text] [Related]
12. Vapor Sorption-Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance. Kittle JD; Grasdal EN; Kim SM; Levin NR; Davis PA; Kittle AL; Kittle IJ; Mulcahy JA; Keith BR ACS Omega; 2022 Jul; 7(26):22735-22742. PubMed ID: 35811928 [TBL] [Abstract][Full Text] [Related]
13. Reactions of sulphur mustard and sarin on V 1.02 O 2.98 nanotubes. Mahato TH; Prasad GK; Singh B; Srivastava AR; Ganesan K; Acharya J; Vijayaraghavan R J Hazard Mater; 2009 Jul; 166(2-3):1545-9. PubMed ID: 19135787 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces. Love AH; Bailey CG; Hanna ML; Hok S; Vu AK; Reutter DJ; Raber E J Hazard Mater; 2011 Nov; 196():115-22. PubMed ID: 21944706 [TBL] [Abstract][Full Text] [Related]
15. The Different Sensitive Behaviors of a Hydrogen-Bond Acidic Polymer-Coated SAW Sensor for Chemical Warfare Agents and Their Simulants. Long Y; Wang Y; Du X; Cheng L; Wu P; Jiang Y Sensors (Basel); 2015 Jul; 15(8):18302-14. PubMed ID: 26225975 [TBL] [Abstract][Full Text] [Related]
16. Eco-Friendly Peelable Active Nanocomposite Films Designed for Biological and Chemical Warfare Agents Decontamination. Toader G; Diacon A; Rotariu T; Alexandru M; Rusen E; Ginghină RE; Alexe F; Oncioiu R; Zorila FL; Podaru A; Moldovan AE; Pulpea D; Gavrilă AM; Iordache TV; Șomoghi R Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833298 [TBL] [Abstract][Full Text] [Related]
17. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants. Liu Y; Moon SY; Hupp JT; Farha OK ACS Nano; 2015 Dec; 9(12):12358-64. PubMed ID: 26482030 [TBL] [Abstract][Full Text] [Related]
18. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874 [TBL] [Abstract][Full Text] [Related]
19. SAW Chemical Array Device Coated with Polymeric Sensing Materials for the Detection of Nerve Agents. Kim J; Park H; Kim J; Seo BI; Kim JH Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33302508 [TBL] [Abstract][Full Text] [Related]
20. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent. Waysbort D; McGarvey DJ; Creasy WR; Morrissey KM; Hendrickson DM; Durst HD J Hazard Mater; 2009 Jan; 161(2-3):1114-21. PubMed ID: 18524476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]