These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 27061963)

  • 41. The effect of biological media on the hydrolysis of mustard simulants.
    Cerny LC; Cerny ER
    Biomed Sci Instrum; 1997; 33():535-40. PubMed ID: 9731417
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reactive Organic Suspensions Comprising ZnO, TiO
    Ginghina RE; Bratu AE; Toader G; Moldovan AE; Tiganescu TV; Oncioiu RE; Deliu P; Petre R; Epure G; Purica M
    Toxics; 2021 Dec; 9(12):. PubMed ID: 34941768
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrolysis of Dimethyl Methylphosphonate by the Cyclic Tetramer of Zirconium Hydroxide.
    Schweigert IV; Gunlycke D
    J Phys Chem A; 2017 Oct; 121(40):7690-7696. PubMed ID: 28925703
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification of Novel Simulants for Toxic Industrial Chemicals and Chemical Warfare Agents for Human Decontamination Studies: A Systematic Review and Categorisation of Physicochemical Characteristics.
    James T; Collins S; Marczylo T
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444429
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrolysis of Dimethyl Methylphosphonate (DMMP) in Hot-Compressed Water.
    Pinkard BR; Shetty S; Kramlich JC; Reinhall PG; Novosselov IV
    J Phys Chem A; 2020 Oct; 124(41):8383-8389. PubMed ID: 32933254
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide.
    Wagner GW; Sorrick DC; Procell LR; Brickhouse MD; Mcvey IF; Schwartz LI
    Langmuir; 2007 Jan; 23(3):1178-86. PubMed ID: 17241030
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NTP Toxicology and Carcinogenesis Studies of Dimethyl Methylphosphonate (CAS No. 756-79-6) in F344/N Rats and B6C3F1 Mice (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 1987 Nov; 323():1-172. PubMed ID: 12748730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient heterogeneous and environmentally friendly degradation of nerve agents on a tungsten-based POM.
    Mizrahi DM; Saphier S; Columbus I
    J Hazard Mater; 2010 Jul; 179(1-3):495-9. PubMed ID: 20363072
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Flexible carbon nanotube sensors for nerve agent simulants.
    Cattanach K; Kulkarni RD; Kozlov M; Manohar SK
    Nanotechnology; 2006 Aug; 17(16):4123-8. PubMed ID: 21727548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interactions of phosphororganic agents with water and components of polyelectrolyte membranes.
    Lee MT; Vishnyakov A; Gor GY; Neimark AV
    J Phys Chem B; 2011 Nov; 115(46):13617-23. PubMed ID: 21988501
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs).
    Zhao S; Xi H; Zuo Y; Han S; Zhu Y; Li Z; Yuan L; Wang Z; Liu C
    J Hazard Mater; 2019 Apr; 367():91-98. PubMed ID: 30594727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative degradation of chemical warfare agents in water by bleaching powder.
    Qi L; Zuo G; Cheng Z; Zhu H; Li S
    Water Sci Technol; 2012; 66(7):1377-83. PubMed ID: 22864420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques.
    Pearman WF; Fountain AW
    Appl Spectrosc; 2006 Apr; 60(4):356-65. PubMed ID: 16613630
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Limitations and challenges in treatment of acute chemical warfare agent poisoning.
    Thiermann H; Worek F; Kehe K
    Chem Biol Interact; 2013 Dec; 206(3):435-43. PubMed ID: 24091052
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dimethyl methylphosphonate adsorption and decomposition on MoO
    Head AR; Tsyshevsky R; Trotochaud L; Yu Y; Karslıoǧlu O; Eichhorn B; Kuklja MM; Bluhm H
    J Phys Condens Matter; 2018 Apr; 30(13):134005. PubMed ID: 29469812
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modified titania nanotubes for decontamination of sulphur mustard.
    Prasad GK; Singh B; Ganesan K; Batra A; Kumeria T; Gutch PK; Vijayaraghavan R
    J Hazard Mater; 2009 Aug; 167(1-3):1192-7. PubMed ID: 19272696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.
    Spiandore M; Piram A; Lacoste A; Prevost P; Maloni P; Torre F; Asia L; Josse D; Doumenq P
    Chem Biol Interact; 2017 Apr; 267():74-79. PubMed ID: 27492218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of calcinations temperature of CuO nanoparticle on the kinetics of decontamination and decontamination products of sulphur mustard.
    Mahato TH; Singh B; Srivastava AK; Prasad GK; Srivastava AR; Ganesan K; Vijayaraghavan R
    J Hazard Mater; 2011 Sep; 192(3):1890-5. PubMed ID: 21803497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Research on the interaction of hydrogen-bond acidic polymer sensitive sensor materials with chemical warfare agents simulants by inverse gas chromatography.
    Yang L; Han Q; Cao S; Huang F; Qin M; Guo C; Ding M
    Sensors (Basel); 2015 Jun; 15(6):12884-90. PubMed ID: 26043177
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Assessing the stoichiometric efficacy of mammalian expressed paraoxonase-1 variant I-F11 to afford protection against G-type nerve agents.
    Mata DG; Sabnekar P; Watson CA; Rezk PE; Chilukuri N
    Chem Biol Interact; 2016 Nov; 259(Pt B):233-241. PubMed ID: 27083144
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.