BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 2706223)

  • 41. Multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents.
    Zakeri IF; Adolph AL; Puyau MR; Vohra FA; Butte NF
    J Appl Physiol (1985); 2010 Jan; 108(1):128-36. PubMed ID: 19892930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Usefulness of motion sensors to estimate energy expenditure in children and adults: a narrative review of studies using DLW.
    Sardinha LB; Júdice PB
    Eur J Clin Nutr; 2017 Mar; 71(3):331-339. PubMed ID: 28145419
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Approaches to estimating physical activity in the community: calorimetric validation of actometers and heart rate monitoring.
    Avons P; Garthwaite P; Davies HL; Murgatroyd PR; James WP
    Eur J Clin Nutr; 1988 Mar; 42(3):185-96. PubMed ID: 3383823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estimation of total daily energy expenditure and its components by monitoring the heart rate of Japanese endurance athletes.
    Motonaga K; Yoshida S; Yamagami F; Kawano T; Takeda E
    J Nutr Sci Vitaminol (Tokyo); 2006 Oct; 52(5):360-7. PubMed ID: 17190107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A practical method of estimating energy expenditure during tennis play.
    Novas AM; Rowbottom DG; Jenkins DG
    J Sci Med Sport; 2003 Mar; 6(1):40-50. PubMed ID: 12801209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive assessment of the components of energy expenditure in infants using a new infant respiratory chamber.
    Cole CR; Rising R; Hakim A; Danon M; Mehta R; Choudhury S; Sundaresh M; Lifshitz F
    J Am Coll Nutr; 1999 Jun; 18(3):233-41. PubMed ID: 10376779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cardiorespiratory fitness estimation from heart rate and body movement in daily life.
    Bonomi AG; Ten Hoor GA; de Morree HM; Plasqui G; Sartor F
    J Appl Physiol (1985); 2020 Mar; 128(3):493-500. PubMed ID: 31999530
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure.
    Brage S; Brage N; Franks PW; Ekelund U; Wong MY; Andersen LB; Froberg K; Wareham NJ
    J Appl Physiol (1985); 2004 Jan; 96(1):343-51. PubMed ID: 12972441
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Validation of cross-sectional time series and multivariate adaptive regression splines models for the prediction of energy expenditure in children and adolescents using doubly labeled water.
    Butte NF; Wong WW; Adolph AL; Puyau MR; Vohra FA; Zakeri IF
    J Nutr; 2010 Aug; 140(8):1516-23. PubMed ID: 20573939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accuracy of Apple Watch Measurements for Heart Rate and Energy Expenditure in Patients With Cardiovascular Disease: Cross-Sectional Study.
    Falter M; Budts W; Goetschalckx K; Cornelissen V; Buys R
    JMIR Mhealth Uhealth; 2019 Mar; 7(3):e11889. PubMed ID: 30888332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Validation of a field technique for the measurement of energy expenditure: factorial method versus continuous respirometry.
    Geissler CA; Dzumbira TM; Noor MI
    Am J Clin Nutr; 1986 Nov; 44(5):596-602. PubMed ID: 3766445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure.
    Whybrow S; Ritz P; Horgan GW; Stubbs RJ
    Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determinants of total daily energy expenditure: variability in physical activity.
    Rising R; Harper IT; Fontvielle AM; Ferraro RT; Spraul M; Ravussin E
    Am J Clin Nutr; 1994 Apr; 59(4):800-4. PubMed ID: 8147322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Energy expenditure estimate by heart-rate monitor and a portable electromagnetic coils system.
    Gastinger S; Nicolas G; Sorel A; Sefati H; Prioux J
    Int J Sport Nutr Exerc Metab; 2012 Apr; 22(2):117-30. PubMed ID: 22349175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy expenditure at rest and during standardized activities: a comparison between elderly and middle-aged women.
    Voorrips LE; van Acker TM; Deurenberg P; van Staveren WA
    Am J Clin Nutr; 1993 Jul; 58(1):15-20. PubMed ID: 8317383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Field evaluation of energy expenditure in women using Tritrac accelerometers.
    Campbell KL; Crocker PR; McKenzie DC
    Med Sci Sports Exerc; 2002 Oct; 34(10):1667-74. PubMed ID: 12370570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Free-living energy expenditure assessed by two different methods in rural Gambian men.
    Heini AF; Minghelli G; Diaz E; Prentice AM; Schutz Y
    Eur J Clin Nutr; 1996 May; 50(5):284-9. PubMed ID: 8735308
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between overnight energy expenditure and BMR measured in a room-sized calorimeter.
    Seale JL; Conway JM
    Eur J Clin Nutr; 1999 Feb; 53(2):107-11. PubMed ID: 10099943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Energy expenditure of constant- and variable-intensity cycling: power meter estimates.
    Haakonssen EC; Martin DT; Burke LM; Jenkins DG
    Med Sci Sports Exerc; 2013 Sep; 45(9):1833-40. PubMed ID: 23470312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.