These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27062419)

  • 1. The Unexpected Reactivity of the Carbon Sites on the Nanostructured Carbon Catalysts towards the C-H Bond Activation from the Analysis of the Aromaticity.
    Sun X; Li B; Su D
    Chem Asian J; 2016 Jun; 11(11):1668-71. PubMed ID: 27062419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account.
    Sun X; Han P; Li B; Mao S; Liu T; Ali S; Lian Z; Su D
    Chem Commun (Camb); 2018 Jan; 54(8):864-875. PubMed ID: 29322143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane.
    Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V
    ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane.
    Tan C; Liu H; Qin Y; Li L; Wang H; Zhu X; Ge Q
    Chemphyschem; 2023 Feb; 24(4):e202200539. PubMed ID: 36223257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the nature of the active site on the carbon catalyst for C-H bond activation.
    Sun X; Li B; Su D
    Chem Commun (Camb); 2014 Sep; 50(75):11016-9. PubMed ID: 25096830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid nanocarbon as a catalyst for direct dehydrogenation of propane: formation of an active and selective core-shell sp2/sp3 nanocomposite structure.
    Wang R; Sun X; Zhang B; Sun X; Su D
    Chemistry; 2014 May; 20(21):6324-31. PubMed ID: 24740731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions.
    Schwartz V; Fu W; Tsai YT; Meyer HM; Rondinone AJ; Chen J; Wu Z; Overbury SH; Liang C
    ChemSusChem; 2013 May; 6(5):840-6. PubMed ID: 23471876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
    Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG
    Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Investigations of C-H Activations on Silica-Supported Co(ii) Sites in Catalytic Propane Dehydrogenation.
    Estes DP
    Chimia (Aarau); 2017 Apr; 71(4):177-180. PubMed ID: 28446331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking C-H bond activation for propane dehydrogenation over transition metal catalysts: work function shines.
    Chang X; Lu Z; Wang X; Zhao ZJ; Gong J
    Chem Sci; 2023 Jun; 14(23):6414-6419. PubMed ID: 37325145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Chemistry and Catalytic Reactivity of Borocarbonitride in Oxidative Dehydrogenation of Propane.
    Wang G; Chen S; Duan Q; Wei F; Lin S; Xie Z
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202307470. PubMed ID: 37523147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured catalysts for organic transformations.
    Chng LL; Erathodiyil N; Ying JY
    Acc Chem Res; 2013 Aug; 46(8):1825-37. PubMed ID: 23350747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ZrO2 -Based Alternatives to Conventional Propane Dehydrogenation Catalysts: Active Sites, Design, and Performance.
    Otroshchenko T; Sokolov S; Stoyanova M; Kondratenko VA; Rodemerck U; Linke D; Kondratenko EV
    Angew Chem Int Ed Engl; 2015 Dec; 54(52):15880-3. PubMed ID: 26566072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative Dehydrogenation on Nanocarbon: Intrinsic Catalytic Activity and Structure-Function Relationships.
    Qi W; Liu W; Guo X; Schlögl R; Su D
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13682-5. PubMed ID: 26388451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface.
    Fu H; Liu ZP; Li ZH; Wang WN; Fan KN
    J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-Doped BN Nanosheets for the Oxidative Dehydrogenation of Ethylbenzene.
    Guo F; Yang P; Pan Z; Cao XN; Xie Z; Wang X
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8231-8235. PubMed ID: 28514048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative purification of carbon nanotubes and its impact on catalytic performance in oxidative dehydrogenation reactions.
    Rinaldi A; Zhang J; Frank B; Su DS; Abd Hamid SB; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):254-60. PubMed ID: 20112335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor.
    Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE
    Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.