These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 27062723)
1. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. Dubský P; Ördögová M; Malý M; Riesová M J Chromatogr A; 2016 May; 1445():158-65. PubMed ID: 27062723 [TBL] [Abstract][Full Text] [Related]
2. Determination of the correct migration time and other parameters of the Haarhoff-van der Linde function from the peak geometry characteristics. Dubský P; Dvořák M; Műllerová L; Gaš B Electrophoresis; 2015 Mar; 36(5):655-61. PubMed ID: 25475400 [TBL] [Abstract][Full Text] [Related]
3. Comparative enantioseparations with native beta-cyclodextrin and heptakis-(2-O-methyl- 3,6-di-O-sulfo)-beta-cyclodextrin in capillary electrophoresis. Chankvetadze B; Burjanadze N; Maynard DM; Bergander K; Bergenthal D; Blaschke G Electrophoresis; 2002 Sep; 23(17):3027-34. PubMed ID: 12207312 [TBL] [Abstract][Full Text] [Related]
4. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Le Saux T; Varenne A; Gareil P Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707 [TBL] [Abstract][Full Text] [Related]
5. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Sursyakova VV; Levdansky VA; Rubaylo AI Anal Bioanal Chem; 2020 Sep; 412(23):5615-5625. PubMed ID: 32617760 [TBL] [Abstract][Full Text] [Related]
6. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex. Riesová M; Svobodová J; Ušelová K; Tošner Z; Zusková I; Gaš B J Chromatogr A; 2014 Oct; 1364():276-88. PubMed ID: 25213298 [TBL] [Abstract][Full Text] [Related]
7. Enantioseparations of hydrobenzoin and structurally related compounds in capillary zone electrophoresis using heptakis(2,3-dihydroxy-6-O-sulfo)-beta-cyclodextrin as chiral selector and enantiomer migration reversal of hydrobenzoin with a dual cyclodextrin system in the presence of borate complexation. Lin CE; Lin SL; Fang IJ; Liao WS; Chen CC Electrophoresis; 2004 Aug; 25(16):2786-94. PubMed ID: 15352010 [TBL] [Abstract][Full Text] [Related]
8. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2020 Jan; 41(1-2):112-115. PubMed ID: 31670400 [TBL] [Abstract][Full Text] [Related]
9. Quantitative description of analyte migration behavior based on dynamic complexation in capillary electrophoresis with one or more additives. Peng X; Bowser MT; Britz-McKibbin P; Bebault GM; Morris JR; Chen DD Electrophoresis; 1997 May; 18(5):706-16. PubMed ID: 9194595 [TBL] [Abstract][Full Text] [Related]
10. Mathematical approach by a selectivity model for rationalization of pH- and selector concentration-dependent reversal of the enantiomer migration order in capillary electrophoresis. Hammitzsch-Wiedemann M; Scriba GK Anal Chem; 2009 Nov; 81(21):8765-73. PubMed ID: 19810711 [TBL] [Abstract][Full Text] [Related]
11. Effect of urea on analyte complexation by 2,6-dimethyl-beta-CD in peptide enantioseparations by CE. Hammitzsch-Wiedemann M; Scriba GK Electrophoresis; 2009 Nov; 30(21):3764-71. PubMed ID: 19816889 [TBL] [Abstract][Full Text] [Related]
12. Comparative enantioseparations with native beta-cyclodextrin, randomly acetylated beta-cyclodextrin and heptakis-(2,3-di-O-acetyl)-beta-cyclodextrin in capillary electrophoresis. Chankvetadze B; Lomsadze K; Burjanadze N; Breitkreutz J; Pintore G; Chessa M; Bergander K; Blaschke G Electrophoresis; 2003 Mar; 24(6):1083-91. PubMed ID: 12658699 [TBL] [Abstract][Full Text] [Related]
13. Capillary electrophoretic and nuclear magnetic resonance studies on the opposite affinity pattern of propranolol enantiomers towards various cyclodextrins. Servais AC; Rousseau A; Fillet M; Lomsadze K; Salgado A; Crommen J; Chankvetadze B J Sep Sci; 2010 Jun; 33(11):1617-24. PubMed ID: 20437416 [TBL] [Abstract][Full Text] [Related]
14. pH-dependence of complexion constants and complex mobility in capillary electrophoresis separations of dipeptide enantiomers. Sabbah S; Süss F; Scriba GK Electrophoresis; 2001 Sep; 22(15):3163-70. PubMed ID: 11589275 [TBL] [Abstract][Full Text] [Related]
15. Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy. Gogolashvili A; Tatunashvili E; Chankvetadze L; Sohajda T; Szeman J; Salgado A; Chankvetadze B Electrophoresis; 2017 Aug; 38(15):1851-1859. PubMed ID: 28328068 [TBL] [Abstract][Full Text] [Related]
16. Determining binding constants for 1:1 and 1:2 inclusion complexes of ester betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2021 Mar; 42(6):700-707. PubMed ID: 33253428 [TBL] [Abstract][Full Text] [Related]
17. Separation of terbutaline enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes. Gogolashvili A; Tatunashvili E; Chankvetadze L; Sohajda T; Szeman J; Gumustas M; Ozkan SA; Salgado A; Chankvetadze B J Chromatogr A; 2018 Oct; 1571():231-239. PubMed ID: 30093095 [TBL] [Abstract][Full Text] [Related]
18. Heptakis(2-O-methyl-3,6-di-O-sulfo)-beta-cyclodextrin: a single isomer, 14-sulfated beta-cyclodextrin for use as a chiral resolving agent in capillary electrophoresis. Maynard DK; Vigh G Electrophoresis; 2001 Sep; 22(15):3152-62. PubMed ID: 11589274 [TBL] [Abstract][Full Text] [Related]
19. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function. Erny GL; Bergström ET; Goodall DM; Grieb S Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462 [TBL] [Abstract][Full Text] [Related]
20. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Dvořák M; Svobodová J; Beneš M; Gaš B Electrophoresis; 2013 Mar; 34(5):761-7. PubMed ID: 23254978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]