These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 2706296)

  • 1. Tissue reactions around two alloplastic ligament substitute materials: experimental study on rats with carbon fibres and polypropylene.
    Mäkisalo SE; Paavolainen P; Grönblad M; Holmström T
    Biomaterials; 1989 Mar; 10(2):105-8. PubMed ID: 2706296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of connective tissue by various alloplastic materials: an experimental study in rats.
    Mäkisalo SE
    Biomaterials; 1989 Sep; 10(7):499-502. PubMed ID: 2478207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biological reaction of the tissues to carbon fibre ligament prosthesis in sheep-knees.
    Neugebauer R; Claes L
    Aktuelle Probl Chir Orthop; 1983; 26():96-100. PubMed ID: 6136238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat peritoneal immune response to carbon fibre reinforced epoxy composite implants.
    Peluso G; Ambrosio L; Cinquegrani M; Nicolais L; Saiello S; Tajana G
    Biomaterials; 1991 Mar; 12(2):231-5. PubMed ID: 1878458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon-fibre versus Marlex mesh in the repair of experimental abdominal wall defects in rats.
    Cameron AE; Taylor DE
    Br J Surg; 1985 Aug; 72(8):648-50. PubMed ID: 3161576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue reactions of 5 sling materials and tissue material detachment strength of 4 synthetic mesh materials in a rabbit model.
    Yildirim A; Basok EK; Gulpinar T; Gurbuz C; Zemheri E; Tokuc R
    J Urol; 2005 Nov; 174(5):2037-40. PubMed ID: 16217389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abdominal wall repair.
    Klinge U; Klosterhalfen B; Müller M; Anurov M; Ottinger A; Schumpelick V
    Biomaterials; 1999 Apr; 20(7):613-23. PubMed ID: 10208403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear.
    Bakker D; van Blitterswijk CA; Hesseling SC; Koerten HK; Kuijpers W; Grote JJ
    J Biomed Mater Res; 1990 Apr; 24(4):489-515. PubMed ID: 2347874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biologic fixation of ligament prostheses and augmentations. An evaluation of bone ingrowth in the dog.
    Arnoczky SP; Torzilli PA; Warren RF; Allen AA
    Am J Sports Med; 1988; 16(2):106-12. PubMed ID: 2967642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postimplant behavior of lightweight polypropylene meshes in an experimental model of abdominal hernia.
    Bellon JM; Rodriguez M; Garcia-Honduvilla N; Gomez-Gil V; Pascual G; Bujan J
    J Invest Surg; 2008; 21(5):280-7. PubMed ID: 19160136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response.
    Weyhe D; Schmitz I; Belyaev O; Grabs R; Müller KM; Uhl W; Zumtobel V
    World J Surg; 2006 Aug; 30(8):1586-91. PubMed ID: 16855805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of prosthetic materials on the growth of Walker 256 tumour in the rat.
    Law NW
    Eur J Surg Oncol; 1990 Jun; 16(3):237-9. PubMed ID: 2140798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Tissue reaction to polypropylene mono-or multi-filament tapes used in surgical techniques of stress urinary incontinence treatment].
    Rechberger T; Wróbel A; Adamiak A; Skomra D; Korobowicz E; Tomaszewski J; Czuczwar M; Skorupski P
    Ginekol Pol; 2003 Sep; 74(9):1008-13. PubMed ID: 14674160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biostability and morphology of tissue reaction of some synthetic polymers.
    Waitzová D; Kramplová M; Mandys V; Dvorák J
    Polim Med; 1986; 16(3-4):93-109. PubMed ID: 3295824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of carbon fibers for repair of abdominal-wall defects in rats.
    Morris DM; Haskins R; Marino AA; Misra RP; Rogers S; Fronczak S; Albright JA
    Surgery; 1990 Jun; 107(6):627-31. PubMed ID: 2141192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Alloplastic ligament replacement. A study of the biological fixation of 5 non-resorbable materials].
    Weckbach A; Kunz E; Kirchner T
    Unfallchirurg; 1990 Aug; 93(8):380-3. PubMed ID: 2144058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tensile strength and host response towards different polypropylene implant materials used for augmentation of fascial repair in a rat model.
    Konstantinovic ML; Pille E; Malinowska M; Verbeken E; De Ridder D; Deprest J
    Int Urogynecol J Pelvic Floor Dysfunct; 2007 Jun; 18(6):619-26. PubMed ID: 17031489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental mechanical and histologic evaluation of the Kennedy ligament augmentation device.
    McPherson GK; Mendenhall HV; Gibbons DF; Plenk H; Rottmann W; Sanford JB; Kennedy JC; Roth JH
    Clin Orthop Relat Res; 1985 Jun; (196):186-95. PubMed ID: 3888466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of ligament replacement with carbon fibres.
    Claes L; Neugebauer R
    Aktuelle Probl Chir Orthop; 1983; 26():58-62. PubMed ID: 6136232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocompatibility of carbon fibre and carbon fibre microparticles.
    Wolter D
    Aktuelle Probl Chir Orthop; 1983; 26():28-36. PubMed ID: 6136228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.