These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27062972)

  • 41. Negative thermal expansion induced by intermetallic charge transfer.
    Azuma M; Oka K; Nabetani K
    Sci Technol Adv Mater; 2015 Jun; 16(3):034904. PubMed ID: 27877801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EPR theoretical study of local molecular structure and thermal expansion coefficient for octahedral Mn2+ centers in zinc fluosilicate.
    Mao AJ; Kuang XY; Wang H; Lu C
    J Phys Chem A; 2006 May; 110(17):5869-73. PubMed ID: 16640383
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-temperature behavior of Sr-doped layered cobaltites Y(Ba(1-x)Sr(x))Co2O5.5: phase stability and structural properties.
    Aurelio G; Sánchez RD; Curiale J; Cuello GJ
    J Phys Condens Matter; 2010 Dec; 22(48):486001. PubMed ID: 21406759
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thermal expansion matching via framework flexibility in zinc dicyanometallates.
    Goodwin AL; Kennedy BJ; Kepert CJ
    J Am Chem Soc; 2009 May; 131(18):6334-5. PubMed ID: 19385622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High redox and performance stability of layered SmBa(0.5)Sr(0.5)Co(1.5)Cu(0.5)O(5+δ) perovskite cathodes for intermediate-temperature solid oxide fuel cells.
    Jun A; Shin J; Kim G
    Phys Chem Chem Phys; 2013 Dec; 15(45):19906-12. PubMed ID: 24150720
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Guest-dependent negative thermal expansion in nanoporous prussian blue analogues M(II)Pt(IV)(CN)6.x{H2O} (0 < or = x < or = 2; M = Zn, Cd).
    Goodwin AL; Chapman KW; Kepert CJ
    J Am Chem Soc; 2005 Dec; 127(51):17980-1. PubMed ID: 16366530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials.
    Borrell A; García-Moreno O; Torrecillas R; García-Rocha V; Fernández A
    Sci Technol Adv Mater; 2012 Feb; 13(1):015007. PubMed ID: 27877474
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sr2Mn3Sb2O2 type oxyselenides: structures, magnetism, and electronic properties of Sr2AO2M2Se2 (A=Co, Mn; M=Cu, Ag).
    Jin S; Chen X; Guo J; Lei M; Lin J; Xi J; Wang W; Wang W
    Inorg Chem; 2012 Oct; 51(19):10185-92. PubMed ID: 22967274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Light-polymerized compomers: coefficient of thermal expansion and microhardness.
    Kwon YH; Kwon TY; Ong JL; Kim KH
    J Prosthet Dent; 2002 Oct; 88(4):396-401. PubMed ID: 12447216
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Apparatus for Measuring the Thermal Expansion of Optical Materials from 30 degrees C to 250 degrees C.
    Ebersole JF; Ballard SS; Browder JS
    Appl Opt; 1972 Apr; 11(4):844-8. PubMed ID: 20119055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure of strontium barium niobate SrxBa1-xNb2O6 (SBN) in the composition range 0.32Podlozhenov S; Graetsch HA; Schneider J; Ulex M; Wöhlecke M; Betzler K
    Acta Crystallogr B; 2006 Dec; 62(Pt 6):960-5. PubMed ID: 17108647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structure, electrical conductivity and thermal expansion of Ni and Nb co-doped LaCoO3.
    Øygarden V; Grande T
    Dalton Trans; 2013 Feb; 42(8):2704-15. PubMed ID: 23238603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationships between elastic anisotropy and thermal expansion in A
    Romao CP; Donegan SP; Zwanziger JW; White MA
    Phys Chem Chem Phys; 2016 Nov; 18(44):30652-30661. PubMed ID: 27790661
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature dependence of density, thermal expansion coefficient and shear viscosity of supercooled glycerol as a reflection of its structure.
    Blazhnov IV; Malomuzh NP; Lishchuk SV
    J Chem Phys; 2004 Oct; 121(13):6435-41. PubMed ID: 15446942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Negative Thermal Expansion over a Wide Temperature Range in Fe-Doped MnNiGe Composites.
    Zhao W; Sun Y; Liu Y; Shi K; Lu H; Song P; Wang L; Han H; Yuan X; Wang C
    Front Chem; 2018; 6():15. PubMed ID: 29468152
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heat capacity and thermal expansion of the itinerant helimagnet MnSi.
    Stishov SM; Petrova AE; Khasanov S; Kh Panova G; Shikov AA; Lashley JC; Wu D; Lograsso TA
    J Phys Condens Matter; 2008 Jun; 20(23):235222. PubMed ID: 21694313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anisotropic thermal expansion in a metal-organic framework.
    Madsen SR; Lock N; Overgaard J; Iversen BB
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Jun; 70(Pt 3):595-601. PubMed ID: 24892606
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controllable Negative Thermal Expansion by Mechanical Pulverizing in Hexagonal Mn
    Yang S; Ma S; Liu K; Hu Y; Yu K; Han X; Zhang Z; Song Y; Chen C; Luo X; Wang D; Zhong Z
    Inorg Chem; 2018 Nov; 57(22):14199-14207. PubMed ID: 30403468
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.
    Li W; Huang R; Wang W; Zhao Y; Li S; Huang C; Li L
    Phys Chem Chem Phys; 2015 Feb; 17(8):5556-60. PubMed ID: 25642468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.