These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2706304)

  • 1. Use of high-performance polyethylene fibres as a reinforcing phase in poly(methylmethacrylate) bone cement.
    Wagner HD; Cohn D
    Biomaterials; 1989 Mar; 10(2):139-41. PubMed ID: 2706304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic and ultimate properties of acrylic bone cement reinforced with ultra-high-molecular-weight polyethylene fibers.
    Pourdeyhimi B; Wagner HD
    J Biomed Mater Res; 1989 Jan; 23(1):63-80. PubMed ID: 2708405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of its impregnated PMMA bone cement, IV: effect of MMA/accelerator on the surface modification of UHMWPE powder.
    Yang DH; Ko JT; Kim YS; Kim MS; Shin HS; Rhee JM; Khang G; Lee HB
    J Biomater Sci Polym Ed; 2006; 17(7):807-20. PubMed ID: 16909947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness of Kevlar 29/poly(methyl methacrylate) composite materials for surgical implantations.
    Pourdeyhimi B; Robinson HH; Schwartz P; Wagner HD
    Ann Biomed Eng; 1986; 14(3):277-94. PubMed ID: 3767094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface treated polyethylene fibres as reinforcement for acrylic resins.
    Andreopoulos AG; Papaspyrides CD; Tsilibounidis S
    Biomaterials; 1991 Jan; 12(1):83-7. PubMed ID: 2009351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement.
    Yang JM; Huang PY; Yang MC; Lo SK
    J Biomed Mater Res; 1997; 38(4):361-9. PubMed ID: 9421758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-reinforced composite poly(methyl methacrylate): static and fatigue properties.
    Gilbert JL; Ney DS; Lautenschlager EP
    Biomaterials; 1995 Sep; 16(14):1043-55. PubMed ID: 8519925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesive bone cement both to bone and metals: 4-META in MMA initiated with tri-n-butyl borane.
    Ishihara K; Nakabayashi N
    J Biomed Mater Res; 1989 Dec; 23(12):1475-82. PubMed ID: 2621219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved bonding strength of polyethylene/polymethylmetacrylate bone cement--a preliminary study.
    Khang G; Kang YH; Park JB; Lee HB
    Biomed Mater Eng; 1996; 6(5):335-44. PubMed ID: 8986354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibiotic release from an experimental biodegradable bone cement.
    Gerhart TN; Roux RD; Horowitz G; Miller RL; Hanff P; Hayes WC
    J Orthop Res; 1988; 6(4):585-92. PubMed ID: 3379512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative fatigue behavior of different bone cements.
    Gates EI; Carter DR; Harris WH
    Clin Orthop Relat Res; 1984 Oct; (189):294-9. PubMed ID: 6478701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use and handling of acrylic bone cement in Danish orthopaedic departments.
    Darre E; Hölmich P; Jensen JS
    Pharmacol Toxicol; 1993; 72(4-5):332-5. PubMed ID: 8372056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of poly(methyl methacrylate) bone cements.
    Robinson RP; Wright TM; Burstein AH
    J Biomed Mater Res; 1981 Mar; 15(2):203-8. PubMed ID: 7348714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of bone and hydroxyapatite filled 4-META/MMA-TBB bone cement in in vitro and in vivo environments.
    Lee RR
    J Philipp Dent Assoc; 1996; 48(1):5-12. PubMed ID: 9462058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Theoretical experimental studies of temperature distribution at the bone-cement boundary zone in polyethylene acetabular implants, with reference to intraoperatively recorded temperature courses].
    Plitz W; Jäger M; Wiesmüller J; Waas P
    Aktuelle Probl Chir Orthop; 1987; 31():392-5. PubMed ID: 2888392
    [No Abstract]   [Full Text] [Related]  

  • 16. A rat model of resorption of bone at the cement-bone interface in the presence of polyethylene wear particles.
    Howie DW; Vernon-Roberts B; Oakeshott R; Manthey B
    J Bone Joint Surg Am; 1988 Feb; 70(2):257-63. PubMed ID: 3257760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of temperature rise and bonding strength in cements used for permanent head attachments in rats and mice.
    Agterberg MJ; Spoelstra EN; van der Wijst S; Brakkee JH; Wiegant VM; Hamelink R; Brouns K; Westerink BH; Remie R
    Lab Anim; 2010 Jul; 44(3):264-70. PubMed ID: 20573682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylmethacrylate plasma levels during total hip arthroplasty.
    Gentil B; Paugam C; Wolf C; Lienhart A; Augereau B
    Clin Orthop Relat Res; 1993 Feb; (287):112-6. PubMed ID: 8448927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of centrifugation on the fracture properties of acrylic bone cements.
    Rimnac CM; Wright TM; McGill DL
    J Bone Joint Surg Am; 1986 Feb; 68(2):281-7. PubMed ID: 3944165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New polymer materials in total hip arthroplasty. Evaluation with radiostereometry, bone densitometry, radiography and clinical parameters.
    Digas G
    Acta Orthop Suppl; 2005 Feb; 76(315):3-82. PubMed ID: 15790289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.