These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 27063060)

  • 1. Extensive training leads to temporal and spatial shifts of cortical activity underlying visual category selectivity.
    Kietzmann TC; Ehinger BV; Porada D; Engel AK; König P
    Neuroimage; 2016 Jul; 134():22-34. PubMed ID: 27063060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping of the neuronal networks of human cortical brain functions.
    Momjian S; Seghier M; Seeck M; Michel CM
    Adv Tech Stand Neurosurg; 2003; 28():91-142. PubMed ID: 12627809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain.
    Jacques C; Retter TL; Rossion B
    Neuroimage; 2016 Aug; 137():21-33. PubMed ID: 27138205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Categorization training results in shape- and category-selective human neural plasticity.
    Jiang X; Bradley E; Rini RA; Zeffiro T; Vanmeter J; Riesenhuber M
    Neuron; 2007 Mar; 53(6):891-903. PubMed ID: 17359923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal properties of shape processing by event-related MEG adaptation.
    Huberle E; Lutzenberger W
    Neuroimage; 2013 Feb; 67():119-26. PubMed ID: 23128078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroimaging Evidence for 2 Types of Plasticity in Association with Visual Perceptual Learning.
    Shibata K; Sasaki Y; Kawato M; Watanabe T
    Cereb Cortex; 2016 Sep; 26(9):3681-9. PubMed ID: 27298301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracking cognitive processing stages with MEG: A spatio-temporal model of associative recognition in the brain.
    Borst JP; Ghuman AS; Anderson JR
    Neuroimage; 2016 Nov; 141():416-430. PubMed ID: 27498135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neural basis of perceptual learning.
    Gilbert CD; Sigman M; Crist RE
    Neuron; 2001 Sep; 31(5):681-97. PubMed ID: 11567610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experience-dependent plasticity in adult visual cortex.
    Karmarkar UR; Dan Y
    Neuron; 2006 Nov; 52(4):577-85. PubMed ID: 17114043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal dynamics of early spatial and category-specific attentional modulations.
    Ioannides AA; Poghosyan V
    Neuroimage; 2012 Apr; 60(3):1638-51. PubMed ID: 22342803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharpened cortical tuning and enhanced cortico-cortical communication contribute to the long-term neural mechanisms of visual motion perceptual learning.
    Chen N; Bi T; Zhou T; Li S; Liu Z; Fang F
    Neuroimage; 2015 Jul; 115():17-29. PubMed ID: 25921327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI.
    Ahlfors SP; Simpson GV; Dale AM; Belliveau JW; Liu AK; Korvenoja A; Virtanen J; Huotilainen M; Tootell RB; Aronen HJ; Ilmoniemi RJ
    J Neurophysiol; 1999 Nov; 82(5):2545-55. PubMed ID: 10561425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task.
    Szabo M; Deco G; Fusi S; Del Giudice P; Mattia M; Stetter M
    Biol Cybern; 2006 May; 94(5):351-65. PubMed ID: 16555071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic causal modeling of evoked responses in EEG and MEG.
    David O; Kiebel SJ; Harrison LM; Mattout J; Kilner JM; Friston KJ
    Neuroimage; 2006 May; 30(4):1255-72. PubMed ID: 16473023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.
    Magnani B; Frassinetti F; Ditye T; Oliveri M; Costantini M; Walsh V
    Neuroimage; 2014 May; 92():340-8. PubMed ID: 24468407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. fMRI-constrained source analysis reveals early top-down modulations of interference processing using a flanker task.
    Siemann J; Herrmann M; Galashan D
    Neuroimage; 2016 Aug; 136():45-56. PubMed ID: 27181762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEG-based decoding of the spatiotemporal dynamics of visual category perception.
    van de Nieuwenhuijzen ME; Backus AR; Bahramisharif A; Doeller CF; Jensen O; van Gerven MA
    Neuroimage; 2013 Dec; 83():1063-73. PubMed ID: 23927900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociable changes in functional network topology underlie early category learning and development of automaticity.
    Soto FA; Bassett DS; Ashby FG
    Neuroimage; 2016 Nov; 141():220-241. PubMed ID: 27453156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method.
    Li L; Yao D; Yin G
    Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramodal processing optimizes visual perceptual learning and plasticity.
    Zilber N; Ciuciu P; Gramfort A; Azizi L; van Wassenhove V
    Neuroimage; 2014 Jun; 93 Pt 1():32-46. PubMed ID: 24565923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.