BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27063109)

  • 1. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins.
    Grundy GJ; Rulten SL; Arribas-Bosacoma R; Davidson K; Kozik Z; Oliver AW; Pearl LH; Caldecott KW
    Nat Commun; 2016 Apr; 7():11242. PubMed ID: 27063109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional interaction between Ku and the werner syndrome protein in DNA end processing.
    Li B; Comai L
    J Biol Chem; 2000 Sep; 275(37):28349-52. PubMed ID: 10880505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved and species-specific functional interaction between the Werner syndrome-like exonuclease atWEX and the Ku heterodimer in Arabidopsis.
    Li B; Conway N; Navarro S; Comai L; Comai L
    Nucleic Acids Res; 2005; 33(21):6861-7. PubMed ID: 16396834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional characterization of a Ku-binding motif in aprataxin polynucleotide kinase/phosphatase-like factor (APLF).
    Shirodkar P; Fenton AL; Meng L; Koch CA
    J Biol Chem; 2013 Jul; 288(27):19604-13. PubMed ID: 23689425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WRN Exonuclease activity is blocked by specific oxidatively induced base lesions positioned in either DNA strand.
    Bukowy Z; Harrigan JA; Ramsden DA; Tudek B; Bohr VA; Stevnsner T
    Nucleic Acids Res; 2008 Sep; 36(15):4975-87. PubMed ID: 18658245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus.
    Karmakar P; Snowden CM; Ramsden DA; Bohr VA
    Nucleic Acids Res; 2002 Aug; 30(16):3583-91. PubMed ID: 12177300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. XLF and APLF bind Ku80 at two remote sites to ensure DNA repair by non-homologous end joining.
    Nemoz C; Ropars V; Frit P; Gontier A; Drevet P; Yu J; Guerois R; Pitois A; Comte A; Delteil C; Barboule N; Legrand P; Baconnais S; Yin Y; Tadi S; Barbet-Massin E; Berger I; Le Cam E; Modesti M; Rothenberg E; Calsou P; Charbonnier JB
    Nat Struct Mol Biol; 2018 Oct; 25(10):971-980. PubMed ID: 30291363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APLF promotes the assembly and activity of non-homologous end joining protein complexes.
    Grundy GJ; Rulten SL; Zeng Z; Arribas-Bosacoma R; Iles N; Manley K; Oliver A; Caldecott KW
    EMBO J; 2013 Jan; 32(1):112-25. PubMed ID: 23178593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatitis C Virus NS3 Protein Plays a Dual Role in WRN-Mediated Repair of Nonhomologous End Joining.
    Chen TI; Hsu YK; Chou CY; Chen YH; Hsu ST; Liou YS; Dai YC; Chang MF; Chang SC
    J Virol; 2019 Nov; 93(22):. PubMed ID: 31462559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Requirements for the nucleolytic processing of DNA ends by the Werner syndrome protein-Ku70/80 complex.
    Li B; Comai L
    J Biol Chem; 2001 Mar; 276(13):9896-902. PubMed ID: 11152456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand binding characteristics of the Ku80 von Willebrand domain.
    Kim K; Min J; Kirby TW; Gabel SA; Pedersen LC; London RE
    DNA Repair (Amst); 2020 Jan; 85():102739. PubMed ID: 31733588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordinate action of the helicase and 3' to 5' exonuclease of Werner syndrome protein.
    Opresko PL; Laine JP; Brosh RM; Seidman MM; Bohr VA
    J Biol Chem; 2001 Nov; 276(48):44677-87. PubMed ID: 11572872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Werner protein cooperates with the XRCC4-DNA ligase IV complex in end-processing.
    Kusumoto R; Dawut L; Marchetti C; Wan Lee J; Vindigni A; Ramsden D; Bohr VA
    Biochemistry; 2008 Jul; 47(28):7548-56. PubMed ID: 18558713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair.
    Ochi T; Blackford AN; Coates J; Jhujh S; Mehmood S; Tamura N; Travers J; Wu Q; Draviam VM; Robinson CV; Blundell TL; Jackson SP
    Science; 2015 Jan; 347(6218):185-188. PubMed ID: 25574025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance of the interaction with Ku in DNA double-strand break recognition of XLF.
    Yano K; Morotomi-Yano K; Lee KJ; Chen DJ
    FEBS Lett; 2011 Mar; 585(6):841-6. PubMed ID: 21349273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A functional interaction of Ku with Werner exonuclease facilitates digestion of damaged DNA.
    Orren DK; Machwe A; Karmakar P; Piotrowski J; Cooper MP; Bohr VA
    Nucleic Acids Res; 2001 May; 29(9):1926-34. PubMed ID: 11328876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human RECQ1 interacts with Ku70/80 and modulates DNA end-joining of double-strand breaks.
    Parvathaneni S; Stortchevoi A; Sommers JA; Brosh RM; Sharma S
    PLoS One; 2013; 8(5):e62481. PubMed ID: 23650516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One ring to bring them all--the role of Ku in mammalian non-homologous end joining.
    Grundy GJ; Moulding HA; Caldecott KW; Rulten SL
    DNA Repair (Amst); 2014 May; 17():30-8. PubMed ID: 24680220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ku recruits XLF to DNA double-strand breaks.
    Yano K; Morotomi-Yano K; Wang SY; Uematsu N; Lee KJ; Asaithamby A; Weterings E; Chen DJ
    EMBO Rep; 2008 Jan; 9(1):91-6. PubMed ID: 18064046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Werner syndrome protein: biochemical properties and functional interactions.
    Bohr VA; Cooper M; Orren D; Machwe A; Piotrowski J; Sommers J; Karmakar P; Brosh R
    Exp Gerontol; 2000 Sep; 35(6-7):695-702. PubMed ID: 11053659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.