These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27063210)

  • 1. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network?
    Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF
    Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field.
    Lin B; Jiang J; Zeng XC; Li L
    Nat Commun; 2023 Jul; 14(1):4110. PubMed ID: 37433823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid to quasicrystal transition in bilayer water.
    Johnston JC; Kastelowitz N; Molinero V
    J Chem Phys; 2010 Oct; 133(15):154516. PubMed ID: 20969412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Square ice in graphene nanocapillaries.
    Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV
    Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit.
    Jiang J; Gao Y; Zhu W; Liu Y; Zhu C; Francisco JS; Zeng XC
    J Am Chem Soc; 2021 Jun; 143(21):8177-8183. PubMed ID: 34008407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-one-dimensional hydrogen bonding in nanoconfined ice.
    Ravindra P; Advincula XR; Schran C; Michaelides A; Kapil V
    Nat Commun; 2024 Aug; 15(1):7301. PubMed ID: 39181894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic characterization of microscopic hydrogen-bonding disparities in supercritical water.
    Wernet P; Testemale D; Hazemann JL; Argoud R; Glatzel P; Pettersson LG; Nilsson A; Bergmann U
    J Chem Phys; 2005 Oct; 123(15):154503. PubMed ID: 16252958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The anomalously high melting temperature of bilayer ice.
    Kastelowitz N; Johnston JC; Molinero V
    J Chem Phys; 2010 Mar; 132(12):124511. PubMed ID: 20370137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice-Liquid Oscillations in Nanoconfined Water.
    Kastelowitz N; Molinero V
    ACS Nano; 2018 Aug; 12(8):8234-8239. PubMed ID: 30024723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a two-dimensional helical square tube ice in hydrophobic nanoslit using the TIP5P water model.
    Li J; Zhu C; Zhao W; Gao Y; Bai J; Jiang J; Zeng XC
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38661200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden asymmetry of ice.
    Kirov MV
    J Phys Chem B; 2014 Nov; 118(47):13341-8. PubMed ID: 24905908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water.
    Yun Y; Khaliullin RZ; Jung Y
    J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen-bond-reversal symmetry and its violation in ice nanotubes.
    Kirov MV
    Acta Crystallogr A Found Adv; 2016 May; 72(Pt 3):395-405. PubMed ID: 27126117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes.
    Grdadolnik J; Merzel F; Avbelj F
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):322-327. PubMed ID: 28028244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase diagram of water between hydrophobic surfaces.
    Koga K; Tanaka H
    J Chem Phys; 2005 Mar; 122(10):104711. PubMed ID: 15836349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical Prediction of the Anti-Icing Activity of Two-Dimensional Ice I.
    Liu S; Liu X; Li Y; Guo Q; Yu X; Yin Y; Jing H; Zhang P
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the hydrogen bonding in ice Ih by first-principles density function methods.
    Zhang P; Tian L; Zhang ZP; Shao G; Li JC
    J Chem Phys; 2012 Jul; 137(4):044504. PubMed ID: 22852628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum mechanical calculations of charge effects on gating the KcsA channel.
    Kariev AM; Znamenskiy VS; Green ME
    Biochim Biophys Acta; 2007 May; 1768(5):1218-29. PubMed ID: 17336921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.