These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27063249)

  • 21. Theoretical study of the decrease in the femoral neck anteversion during growth.
    Fabeck L; Tolley M; Rooze M; Burny F
    Cells Tissues Organs; 2002; 171(4):269-75. PubMed ID: 12169824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy.
    Carriero A; Jonkers I; Shefelbine SJ
    Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):253-62. PubMed ID: 20229379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proximal femoral physis shear in slipped capital femoral epiphysis--a finite element study.
    Fishkin Z; Armstrong DG; Shah H; Patra A; Mihalko WM
    J Pediatr Orthop; 2006; 26(3):291-4. PubMed ID: 16670537
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Load transmission through the proximal femur of the growing child: a finite element analysis.
    Brown TD; Way ME; Fu FH; Ferguson AB
    Growth; 1980 Dec; 44(4):301-17. PubMed ID: 7227843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hip contact force in presence of aberrant bone geometry during normal and pathological gait.
    Bosmans L; Wesseling M; Desloovere K; Molenaers G; Scheys L; Jonkers I
    J Orthop Res; 2014 Nov; 32(11):1406-15. PubMed ID: 25087777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the femoral bicondylar angle in hominid bipedalism.
    Shefelbine SJ; Tardieu C; Carter DR
    Bone; 2002 May; 30(5):765-70. PubMed ID: 11996917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the capital femoral line orientation. A CT scan study.
    Fabeck L; Farrokh D; Tolley M; Rooze M; Burny F
    Eur J Morphol; 2002 Feb; 40(1):23-7. PubMed ID: 12959345
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Finite element analysis for modular hemipelvic endoprosthesis during loaded gait cycle].
    Ji T; Guo W; Tang XD; Dong S
    Beijing Da Xue Xue Bao Yi Xue Ban; 2010 Apr; 42(2):192-6. PubMed ID: 20396363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cam morphology in young male football players mostly develops before proximal femoral growth plate closure: a prospective study with 5-yearfollow-up.
    van Klij P; Heijboer MP; Ginai AZ; Verhaar JAN; Waarsing JH; Agricola R
    Br J Sports Med; 2019 May; 53(9):532-538. PubMed ID: 30323059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical factors explain development of cam-type deformity.
    Roels P; Agricola R; Oei EH; Weinans H; Campoli G; Zadpoor AA
    Osteoarthritis Cartilage; 2014 Dec; 22(12):2074-82. PubMed ID: 25241242
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influences of mechanical stress on prenatal and postnatal skeletal development.
    Carter DR; Orr TE; Fyhrie DP; Schurman DJ
    Clin Orthop Relat Res; 1987 Jun; (219):237-50. PubMed ID: 3581576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Mechanical loading of the human femoral neck].
    Hert J; Fiala P; Jírová J
    Acta Chir Orthop Traumatol Cech; 2001; 68(4):222-9. PubMed ID: 11706546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.
    Bagheri ZS; Tavakkoli Avval P; Bougherara H; Aziz MS; Schemitsch EH; Zdero R
    J Biomech Eng; 2014 Sep; 136(9):091002. PubMed ID: 24828985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A fatigue loading model for investigation of iatrogenic subtrochanteric fractures of the femur.
    Tsai AG; Reich MS; Bensusan J; Ashworth T; Marcus RE; Akkus O
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):981-7. PubMed ID: 24125692
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A finite element model of the lower limb during stance phase of gait cycle including the muscle forces.
    Diffo Kaze A; Maas S; Arnoux PJ; Wolf C; Pape D
    Biomed Eng Online; 2017 Dec; 16(1):138. PubMed ID: 29212516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty.
    Cheal EJ; Spector M; Hayes WC
    J Orthop Res; 1992 May; 10(3):405-22. PubMed ID: 1569504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shear stress in epiphyseal growth plate is a risk factor for slipped capital femoral epiphysis.
    Zupanc O; Krizancic M; Daniel M; Mavcic B; Antolic V; Iglic A; Kralj-Iglic V
    J Pediatr Orthop; 2008 Jun; 28(4):444-51. PubMed ID: 18520282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A sclerotic rim provides mechanical support for the femoral head in osteonecrosis.
    Yu T; Xie L; Chu F
    Orthopedics; 2015 May; 38(5):e374-9. PubMed ID: 25970363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of the structural response of the femoral shaft under dynamic loading using subject-specific finite element models.
    Park G; Kim T; Forman J; Panzer MB; Crandall JR
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(11):1151-1166. PubMed ID: 28632407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A large-deformation, finite-element study of chondrodiatasis in the canine distal femoral epiphyseal plate.
    Alberts LR; Pao YC; Lippiello L
    J Biomech; 1993 Nov; 26(11):1291-305. PubMed ID: 8262991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.