BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27063456)

  • 21. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease.
    Lynch G; Kramar EA; Rex CS; Jia Y; Chappas D; Gall CM; Simmons DA
    J Neurosci; 2007 Apr; 27(16):4424-34. PubMed ID: 17442827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-dependent changes in the calcium sensitivity of striatal mitochondria in mouse models of Huntington's Disease.
    Brustovetsky N; LaFrance R; Purl KJ; Brustovetsky T; Keene CD; Low WC; Dubinsky JM
    J Neurochem; 2005 Jun; 93(6):1361-70. PubMed ID: 15935052
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells.
    Xifró X; García-Martínez JM; Del Toro D; Alberch J; Pérez-Navarro E
    J Neurochem; 2008 Jun; 105(5):1596-612. PubMed ID: 18221365
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motor skill learning modulates striatal extracellular vesicles' content in a mouse model of Huntington's disease.
    Solana-Balaguer J; Garcia-Segura P; Campoy-Campos G; Chicote-González A; Fernández-Irigoyen J; Santamaría E; Pérez-Navarro E; Masana M; Alberch J; Malagelada C
    Cell Commun Signal; 2024 Jun; 22(1):321. PubMed ID: 38863004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice.
    Milnerwood AJ; Kaufman AM; Sepers MD; Gladding CM; Zhang L; Wang L; Fan J; Coquinco A; Qiao JY; Lee H; Wang YT; Cynader M; Raymond LA
    Neurobiol Dis; 2012 Oct; 48(1):40-51. PubMed ID: 22668780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum.
    Saavedra A; García-Martínez JM; Xifró X; Giralt A; Torres-Peraza JF; Canals JM; Díaz-Hernández M; Lucas JJ; Alberch J; Pérez-Navarro E
    Cell Death Differ; 2010 Feb; 17(2):324-35. PubMed ID: 19745829
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alterations in striatal synaptic transmission are consistent across genetic mouse models of Huntington's disease.
    Cummings DM; Cepeda C; Levine MS
    ASN Neuro; 2010 Jun; 2(3):e00036. PubMed ID: 20585470
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wheel running and environmental enrichment differentially modify exon-specific BDNF expression in the hippocampus of wild-type and pre-motor symptomatic male and female Huntington's disease mice.
    Zajac MS; Pang TY; Wong N; Weinrich B; Leang LS; Craig JM; Saffery R; Hannan AJ
    Hippocampus; 2010 May; 20(5):621-36. PubMed ID: 19499586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AAV-BDNF mediated attenuation of quinolinic acid-induced neuropathology and motor function impairment.
    Kells AP; Henry RA; Connor B
    Gene Ther; 2008 Jul; 15(13):966-77. PubMed ID: 18323792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in Huntington's disease.
    Zuccato C; Belyaev N; Conforti P; Ooi L; Tartari M; Papadimou E; MacDonald M; Fossale E; Zeitlin S; Buckley N; Cattaneo E
    J Neurosci; 2007 Jun; 27(26):6972-83. PubMed ID: 17596446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease.
    Zuccato C; Ciammola A; Rigamonti D; Leavitt BR; Goffredo D; Conti L; MacDonald ME; Friedlander RM; Silani V; Hayden MR; Timmusk T; Sipione S; Cattaneo E
    Science; 2001 Jul; 293(5529):493-8. PubMed ID: 11408619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dopaminergic stabilizer, (-)-OSU6162, rescues striatal neurons with normal and expanded polyglutamine chains in huntingtin protein from exposure to free radicals and mitochondrial toxins.
    Ruiz C; Casarejos MJ; Rubio I; Gines S; Puigdellivol M; Alberch J; Mena MA; de Yebenes JG
    Brain Res; 2012 Jun; 1459():100-12. PubMed ID: 22560595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenoviral astrocyte-specific expression of BDNF in the striata of mice transgenic for Huntington's disease delays the onset of the motor phenotype.
    Arregui L; Benítez JA; Razgado LF; Vergara P; Segovia J
    Cell Mol Neurobiol; 2011 Nov; 31(8):1229-43. PubMed ID: 21681558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progressive loss of BDNF in a mouse model of Huntington's disease and rescue by BDNF delivery.
    Zuccato C; Liber D; Ramos C; Tarditi A; Rigamonti D; Tartari M; Valenza M; Cattaneo E
    Pharmacol Res; 2005 Aug; 52(2):133-9. PubMed ID: 15967378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice.
    Apostol BL; Simmons DA; Zuccato C; Illes K; Pallos J; Casale M; Conforti P; Ramos C; Roarke M; Kathuria S; Cattaneo E; Marsh JL; Thompson LM
    Mol Cell Neurosci; 2008 Sep; 39(1):8-20. PubMed ID: 18602275
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity.
    Saavedra A; Giralt A; Rué L; Xifró X; Xu J; Ortega Z; Lucas JJ; Lombroso PJ; Alberch J; Pérez-Navarro E
    J Neurosci; 2011 Jun; 31(22):8150-62. PubMed ID: 21632937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. BDNF and TRiC-inspired reagent rescue cortical synaptic deficits in a mouse model of Huntington's disease.
    Gu Y; Pope A; Smith C; Carmona C; Johnstone A; Shi L; Chen X; Santos S; Bacon-Brenes CC; Shoff T; Kleczko KM; Frydman J; Thompson LM; Mobley WC; Wu C
    Neurobiol Dis; 2024 Jun; 195():106502. PubMed ID: 38608784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early onset deficits on the delayed alternation task in the Hdh(Q92) knock-in mouse model of Huntington's disease.
    Trueman RC; Jones L; Dunnett SB; Brooks SP
    Brain Res Bull; 2012 Jun; 88(2-3):156-62. PubMed ID: 21440047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease.
    Milnerwood AJ; Cummings DM; Dallérac GM; Brown JY; Vatsavayai SC; Hirst MC; Rezaie P; Murphy KP
    Hum Mol Genet; 2006 May; 15(10):1690-703. PubMed ID: 16600988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter.
    Martin E; Betuing S; Pagès C; Cambon K; Auregan G; Deglon N; Roze E; Caboche J
    Hum Mol Genet; 2011 Jun; 20(12):2422-34. PubMed ID: 21493629
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.