These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 27063609)
1. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species. de Athayde Moncorvo Collado A; Dupuy FG; Morero RD; Minahk C Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1479-87. PubMed ID: 27063609 [TBL] [Abstract][Full Text] [Related]
2. Quercetin and epigallocatechin-3-gallate effect on the anisotropy of model membranes with cholesterol. Ionescu D; Margină D; Ilie M; Iftime A; Ganea C Food Chem Toxicol; 2013 Nov; 61():94-100. PubMed ID: 23523830 [TBL] [Abstract][Full Text] [Related]
3. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model. Dabbagh-Bazarbachi H; Clergeaud G; Quesada IM; Ortiz M; O'Sullivan CK; Fernández-Larrea JB J Agric Food Chem; 2014 Aug; 62(32):8085-93. PubMed ID: 25050823 [TBL] [Abstract][Full Text] [Related]
4. Membrane interactions of ternary phospholipid/cholesterol bilayers and encapsulation efficiencies of a RIP II protein. Manojlovic V; Winkler K; Bunjes V; Neub A; Schubert R; Bugarski B; Leneweit G Colloids Surf B Biointerfaces; 2008 Jul; 64(2):284-96. PubMed ID: 18359207 [TBL] [Abstract][Full Text] [Related]
5. Enterodiol is Actively Transported by Rat Liver Cell Membranes. de Athayde Moncorvo Collado A; Salazar PB; Minahk C J Membr Biol; 2018 Aug; 251(4):593-600. PubMed ID: 29728709 [TBL] [Abstract][Full Text] [Related]
6. Probing the position of resveratrol in lipid bilayers: A neutron reflectivity study. de Ghellinck A; Shen C; Fragneto G; Klösgen B Colloids Surf B Biointerfaces; 2015 Oct; 134():65-72. PubMed ID: 26142630 [TBL] [Abstract][Full Text] [Related]
7. Lipid-mediated preferential localization of hypericin in lipid membranes. Ho YF; Wu MH; Cheng BH; Chen YW; Shih MC Biochim Biophys Acta; 2009 Jun; 1788(6):1287-95. PubMed ID: 19366588 [TBL] [Abstract][Full Text] [Related]
8. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of EGCG Loading Capacity in DMPC Membranes. Pires F; Geraldo VPN; Rodrigues B; Granada-Flor A; de Almeida RFM; Oliveira ON; Victor BL; Machuqueiro M; Raposo M Langmuir; 2019 May; 35(20):6771-6781. PubMed ID: 31006246 [TBL] [Abstract][Full Text] [Related]
10. Protective effect of epigallocatechin gallate on human erythrocytes. Colina JR; Suwalsky M; Manrique-Moreno M; Petit K; Aguilar LF; Jemiola-Rzeminska M; Strzalka K Colloids Surf B Biointerfaces; 2019 Jan; 173():742-750. PubMed ID: 30384271 [TBL] [Abstract][Full Text] [Related]
11. Direct evidence of interaction of a green tea polyphenol, epigallocatechin gallate, with lipid bilayers by solid-state Nuclear Magnetic Resonance. Kumazawa S; Kajiya K; Naito A; Saito H; Tuzi S; Tanio M; Suzuki M; Nanjo F; Suzuki E; Nakayama T Biosci Biotechnol Biochem; 2004 Aug; 68(8):1743-7. PubMed ID: 15322359 [TBL] [Abstract][Full Text] [Related]
12. Modulating membrane properties: the effect of trehalose and cholesterol on a phospholipid bilayer. Doxastakis M; Sum AK; de Pablo JJ J Phys Chem B; 2005 Dec; 109(50):24173-81. PubMed ID: 16375409 [TBL] [Abstract][Full Text] [Related]
13. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Wenk MR; Alt T; Seelig A; Seelig J Biophys J; 1997 Apr; 72(4):1719-31. PubMed ID: 9083676 [TBL] [Abstract][Full Text] [Related]
14. Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage. Bhattacharya S; Haldar S Biochim Biophys Acta; 2000 Jul; 1467(1):39-53. PubMed ID: 10930507 [TBL] [Abstract][Full Text] [Related]
15. Mixed DPPC-cholesterol Langmuir monolayers in presence of hydrophilic silica nanoparticles. Guzmán E; Liggieri L; Santini E; Ferrari M; Ravera F Colloids Surf B Biointerfaces; 2013 May; 105():284-93. PubMed ID: 23384691 [TBL] [Abstract][Full Text] [Related]
16. Effects of resveratrol on the structure and fluidity of lipid bilayers: a membrane biophysical study. Neves AR; Nunes C; Amenitsch H; Reis S Soft Matter; 2016 Feb; 12(7):2118-26. PubMed ID: 26745787 [TBL] [Abstract][Full Text] [Related]
17. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. Alsop RJ; Armstrong CL; Maqbool A; Toppozini L; Dies H; Rheinstädter MC Soft Matter; 2015 Jun; 11(24):4756-67. PubMed ID: 25915907 [TBL] [Abstract][Full Text] [Related]
18. Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry. Hsieh CJ; Chen YW; Hwang DW Phys Chem Chem Phys; 2013 Oct; 15(39):16634-40. PubMed ID: 23965762 [TBL] [Abstract][Full Text] [Related]
19. Dipalmitoylphosphatidylcholine/linoleic acid mixed unilamellar vesicles as model membranes for studies on novel free-radical scavengers. Castelli F; Trombetta D; Tomaino A; Bonina F; Romeo G; Uccella N; Saija A J Pharmacol Toxicol Methods; 1997 Apr; 37(3):135-41. PubMed ID: 9253749 [TBL] [Abstract][Full Text] [Related]
20. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]