These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27063730)

  • 1. Multi-Conformation Monte Carlo: A Method for Introducing Flexibility in Efficient Simulations of Many-Protein Systems.
    Prytkova V; Heyden M; Khago D; Freites JA; Butts CT; Martin RW; Tobias DJ
    J Phys Chem B; 2016 Aug; 120(33):8115-26. PubMed ID: 27063730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Conformational Flexibility in Monte Carlo Simulations of Many-Protein Systems.
    Majumdar BB; Prytkova V; Wong EK; Freites JA; Tobias DJ; Heyden M
    J Chem Theory Comput; 2019 Feb; 15(2):1399-1408. PubMed ID: 30633517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomically detailed simulations of concentrated protein solutions: the effects of salt, pH, point mutations, and protein concentration in simulations of 1000-molecule systems.
    McGuffee SR; Elcock AH
    J Am Chem Soc; 2006 Sep; 128(37):12098-110. PubMed ID: 16967959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The combined simulation approach of atomistic and continuum models for the thermodynamics of lysozyme crystals.
    Chang J; Lenhoff AM; Sandler SI
    J Phys Chem B; 2005 Oct; 109(41):19507-15. PubMed ID: 16853520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.
    Janowski PA; Liu C; Deckman J; Case DA
    Protein Sci; 2016 Jan; 25(1):87-102. PubMed ID: 26013419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study on local and small-amplitude conformational fluctuation in hen egg white lysozyme.
    Wakana H; Wako H; Saitô N
    Int J Pept Protein Res; 1984 Mar; 23(3):315-23. PubMed ID: 6715109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropic coarse-grain Monte Carlo simulations of lysozyme, lactoferrin, and NISTmAb by precomputing atomistic models.
    Hatch HW; Bergonzo C; Blanco MA; Yuan G; Grudinin S; Lund M; Curtis JE; Grishaev AV; Liu Y; Shen VK
    J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39234967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes.
    Yang S; Park S; Makowski L; Roux B
    Biophys J; 2009 Jun; 96(11):4449-63. PubMed ID: 19486669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm.
    McGuffee SR; Elcock AH
    PLoS Comput Biol; 2010 Mar; 6(3):e1000694. PubMed ID: 20221255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constant-pH Hybrid Nonequilibrium Molecular Dynamics-Monte Carlo Simulation Method.
    Chen Y; Roux B
    J Chem Theory Comput; 2015 Aug; 11(8):3919-31. PubMed ID: 26300709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection of Monte Carlo and molecular dynamics trajectories onto the normal mode axes: human lysozyme.
    Horiuchi T; Go N
    Proteins; 1991; 10(2):106-16. PubMed ID: 1896424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling protein-protein interaction potential through Monte Carlo simulation combined with small-angle X-ray scattering.
    Tanouye FT; Alves JR; Spinozzi F; Itri R
    Int J Biol Macromol; 2023 Sep; 248():125869. PubMed ID: 37473888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of proteins in crowded solutions studied by docking-based modeling.
    Singh A; Kundrotas PJ; Vakser IA
    J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39225532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying Protein-Protein Interactions in Molecular Simulations.
    Jost Lopez A; Quoika PK; Linke M; Hummer G; Köfinger J
    J Phys Chem B; 2020 Jun; 124(23):4673-4685. PubMed ID: 32379446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics of Biomolecules through Direct Analysis of Dipolar Couplings.
    Olsson S; Ekonomiuk D; Sgrignani J; Cavalli A
    J Am Chem Soc; 2015 May; 137(19):6270-8. PubMed ID: 25895902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating proteins at constant pH: An approach combining molecular dynamics and Monte Carlo simulation.
    Bürgi R; Kollman PA; Van Gunsteren WF
    Proteins; 2002 Jun; 47(4):469-80. PubMed ID: 12001225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function.
    Taylor RD; Jewsbury PJ; Essex JW
    J Comput Chem; 2003 Oct; 24(13):1637-56. PubMed ID: 12926007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the similarity of properties in solution or in the crystalline state: a molecular dynamics study of hen lysozyme.
    Stocker U; Spiegel K; van Gunsteren WF
    J Biomol NMR; 2000 Sep; 18(1):1-12. PubMed ID: 11061223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.