These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 27063847)
21. Sensitivity of cytochrome P450 1A induction in dab (Limanda limanda) of different age and sex as a biomarker for environmental contaminants in the southern North Sea. Sleiderink HM; Oostingh I; Goksøyr A; Boon JP Arch Environ Contam Toxicol; 1995 May; 28(4):423-30. PubMed ID: 7755396 [TBL] [Abstract][Full Text] [Related]
22. Mercury (Hg) and methyl mercury (MeHg) concentrations in fish from the coastal lagoon of Orbetello, central Italy. Miniero R; Beccaloni E; Carere M; Ubaldi A; Mancini L; Marchegiani S; Cicero MR; Scenati R; Lucchetti D; Ziemacki G; De Felip E Mar Pollut Bull; 2013 Nov; 76(1-2):365-9. PubMed ID: 23998853 [TBL] [Abstract][Full Text] [Related]
23. Eutrophication Increases Phytoplankton Methylmercury Concentrations in a Coastal Sea-A Baltic Sea Case Study. Soerensen AL; Schartup AT; Gustafsson E; Gustafsson BG; Undeman E; Björn E Environ Sci Technol; 2016 Nov; 50(21):11787-11796. PubMed ID: 27704806 [TBL] [Abstract][Full Text] [Related]
24. Inter-individual variations of human mercury exposure biomarkers: a cross-sectional assessment. Berglund M; Lind B; Björnberg KA; Palm B; Einarsson O; Vahter M Environ Health; 2005 Oct; 4():20. PubMed ID: 16202128 [TBL] [Abstract][Full Text] [Related]
25. Mercury speciation and biomagnification in the food web of Caddo Lake, Texas and Louisiana, USA, a subtropical freshwater ecosystem. Chumchal MM; Rainwater TR; Osborn SC; Roberts AP; Abel MT; Cobb GP; Smith PN; Bailey FC Environ Toxicol Chem; 2011 May; 30(5):1153-62. PubMed ID: 21305578 [TBL] [Abstract][Full Text] [Related]
26. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish. Peng X; Liu F; Wang WX Environ Toxicol Chem; 2016 Aug; 35(8):2074-83. PubMed ID: 26756981 [TBL] [Abstract][Full Text] [Related]
27. Mercury and methylmercury concentrations in two newly constructed reservoirs in the Wujiang River, Guizhou, China. Yao H; Feng X; Guo Y; Yan H; Fu X; Li Z; Meng B Environ Toxicol Chem; 2011 Mar; 30(3):530-7. PubMed ID: 21298699 [TBL] [Abstract][Full Text] [Related]
28. Distribution and bioavailability of mercury in the surface sediments of the Baltic Sea. Kwasigroch U; Bełdowska M; Jędruch A; Łukawska-Matuszewska K Environ Sci Pollut Res Int; 2021 Jul; 28(27):35690-35708. PubMed ID: 33675497 [TBL] [Abstract][Full Text] [Related]
29. Mercury species of sediment and fish in freshwater fish ponds around the Pearl River Delta, PR China: human health risk assessment. Shao D; Liang P; Kang Y; Wang H; Cheng Z; Wu S; Shi J; Lo SC; Wang W; Wong MH Chemosphere; 2011 Apr; 83(4):443-8. PubMed ID: 21272914 [TBL] [Abstract][Full Text] [Related]
30. Mercury in the stomach contents of dab (Limanda limanda) from the North East Irish Sea and Mersey Estuary. Leah RT; Ma ZY; Evans SJ; Johnson MS Environ Pollut; 1991; 72(2):117-26. PubMed ID: 15092107 [TBL] [Abstract][Full Text] [Related]
31. Pre-anthropocene mercury residues in North American freshwater fish. Hope BK; Louch J Integr Environ Assess Manag; 2014 Apr; 10(2):299-308. PubMed ID: 24458807 [TBL] [Abstract][Full Text] [Related]
32. Effects of diet composition and trophic structure on mercury bioaccumulation in temperate flatfishes. Payne EJ; Taylor DL Arch Environ Contam Toxicol; 2010 Feb; 58(2):431-43. PubMed ID: 19997909 [TBL] [Abstract][Full Text] [Related]
33. Razorbills (Alca torda) as bioindicators of mercury pollution in the southwestern Mediterranean. Espín S; Martínez-López E; Gómez-Ramírez P; María-Mojica P; García-Fernández AJ Mar Pollut Bull; 2012 Nov; 64(11):2461-70. PubMed ID: 22935523 [TBL] [Abstract][Full Text] [Related]
34. The influence of mariculture on mercury distribution in sediments and fish around Hong Kong and adjacent mainland China waters. Liang P; Shao DD; Wu SC; Shi JB; Sun XL; Wu FY; Lo SC; Wang WX; Wong MH Chemosphere; 2011 Feb; 82(7):1038-43. PubMed ID: 21075414 [TBL] [Abstract][Full Text] [Related]
35. First evidence of explosives and their degradation products in dab (Limanda limanda L.) from a munition dumpsite in the Baltic Sea. Koske D; Straumer K; Goldenstein NI; Hanel R; Lang T; Kammann U Mar Pollut Bull; 2020 Jun; 155():111131. PubMed ID: 32310096 [TBL] [Abstract][Full Text] [Related]
36. Fish eyes and brain as primary targets for mercury accumulation - a new insight on environmental risk assessment. Pereira P; Raimundo J; Araújo O; Canário J; Almeida A; Pacheco M Sci Total Environ; 2014 Oct; 494-495():290-8. PubMed ID: 25058895 [TBL] [Abstract][Full Text] [Related]
37. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA. Sherman LS; Blum JD Sci Total Environ; 2013 Mar; 448():163-75. PubMed ID: 23062970 [TBL] [Abstract][Full Text] [Related]
38. World war munitions as a source of mercury in the southwest Baltic Sea. Gosnell KJ; Heimbürger-Boavida LE; Beck AJ; Ukotije-Ikwut PR; Achterberg EP Chemosphere; 2023 Dec; 345():140522. PubMed ID: 37879375 [TBL] [Abstract][Full Text] [Related]
39. Watershed characteristics and climate factors effect on the temporal variability of mercury in the southern Baltic Sea rivers. Gębka K; Bełdowska M; Saniewska D; Kuliński K; Bełdowski J J Environ Sci (China); 2018 Jun; 68():55-64. PubMed ID: 29908745 [TBL] [Abstract][Full Text] [Related]
40. Modelling mercury concentrations in prey fish: derivation of a national-scale common indicator of dietary mercury exposure for piscivorous fish and wildlife. Depew DC; Burgess NM; Campbell LM Environ Pollut; 2013 May; 176():234-43. PubMed ID: 23434774 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]