These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 27064061)
21. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Xie C; Mace J; Dinno MA; Li YQ; Tang W; Newton RJ; Gemperline PJ Anal Chem; 2005 Jul; 77(14):4390-7. PubMed ID: 16013851 [TBL] [Abstract][Full Text] [Related]
22. [Raman spectra of single human living erythrocyte with the effect of pH and serum albumin]. Wu ZJ; Wang C; Lin ZC; Jiao QZ Guang Pu Xue Yu Guang Pu Fen Xi; 2014 May; 34(5):1279-83. PubMed ID: 25095422 [TBL] [Abstract][Full Text] [Related]
23. Studying single red blood cells under a tunable external force by combining passive microrheology with Raman spectroscopy. Raj S; Wojdyla M; Petrov D Cell Biochem Biophys; 2013 Apr; 65(3):347-61. PubMed ID: 23080020 [TBL] [Abstract][Full Text] [Related]
24. Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy. Jia W; Chen P; Chen W; Li Y Medicine (Baltimore); 2018 Sep; 97(39):e12611. PubMed ID: 30278579 [TBL] [Abstract][Full Text] [Related]
25. Raman tweezers and their application to the study of singly trapped eukaryotic cells. Snook RD; Harvey TJ; Correia Faria E; Gardner P Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790 [TBL] [Abstract][Full Text] [Related]
26. Visible Raman excitation laser induced power and exposure dependent effects in red blood cells. Ahlawat S; Kumar N; Uppal A; Kumar Gupta P J Biophotonics; 2017 Mar; 10(3):415-422. PubMed ID: 26990235 [TBL] [Abstract][Full Text] [Related]
27. Red blood cells under varying extracellular tonicity conditions: an optical tweezers combined with micro-Raman study. Lukose J; Shastry S; Mithun N; Mohan G; Ahmed A; Chidangil S Biomed Phys Eng Express; 2020 Jan; 6(1):015036. PubMed ID: 33438624 [TBL] [Abstract][Full Text] [Related]
28. Raman tweezers spectroscopy of live, single red and white blood cells. Bankapur A; Zachariah E; Chidangil S; Valiathan M; Mathur D PLoS One; 2010 Apr; 5(4):e10427. PubMed ID: 20454686 [TBL] [Abstract][Full Text] [Related]
29. [Analysis of components difference of yeast strains based on laser tweezers Raman spectroscopy combined with multistatistical analysis]. Lai JZ; Liu B; Wang GW; Tao ZH; Huang SS Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Feb; 31(2):412-7. PubMed ID: 21510393 [TBL] [Abstract][Full Text] [Related]
30. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter. Lin J; Li YQ Opt Lett; 2014 Jan; 39(1):108-10. PubMed ID: 24365834 [TBL] [Abstract][Full Text] [Related]
31. Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Bellini N; Vishnubhatla KC; Bragheri F; Ferrara L; Minzioni P; Ramponi R; Cristiani I; Osellame R Opt Express; 2010 Mar; 18(5):4679-88. PubMed ID: 20389480 [TBL] [Abstract][Full Text] [Related]
32. [Laser tweezers Raman spectroscopy analysis of liver cancer tissue]. Wang YJ; Yao HL; Wang GW; Wang Y; Feng MF Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jul; 29(7):1881-3. PubMed ID: 19798963 [TBL] [Abstract][Full Text] [Related]
33. Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. Sinjab F; Awuah D; Gibson G; Padgett M; Ghaemmaghami AM; Notingher I Opt Express; 2018 Sep; 26(19):25211-25225. PubMed ID: 30469626 [TBL] [Abstract][Full Text] [Related]
34. Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles. Redding B; Schwab M; Pan YL Sensors (Basel); 2015 Aug; 15(8):19021-46. PubMed ID: 26247952 [TBL] [Abstract][Full Text] [Related]
35. A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. Ramser K; Enger J; Goksör M; Hanstorp D; Logg K; Käll M Lab Chip; 2005 Apr; 5(4):431-6. PubMed ID: 15791341 [TBL] [Abstract][Full Text] [Related]
36. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells. Rusciano G Phys Med; 2010 Oct; 26(4):233-9. PubMed ID: 20185349 [TBL] [Abstract][Full Text] [Related]
37. Monitoring trehalose uptake and conversion by single bacteria using laser tweezers Raman spectroscopy. Avetisyan A; Jensen JB; Huser T Anal Chem; 2013 Aug; 85(15):7264-70. PubMed ID: 23796054 [TBL] [Abstract][Full Text] [Related]
38. Analysis of single eukaryotic cells using Raman Tweezers. Faria EC; Gardner P Methods Mol Biol; 2012; 853():151-67. PubMed ID: 22323146 [TBL] [Abstract][Full Text] [Related]
39. Nondestructive Identification and Accurate Isolation of Single Cells through a Chip with Raman Optical Tweezers. Fang T; Shang W; Liu C; Xu J; Zhao D; Liu Y; Ye A Anal Chem; 2019 Aug; 91(15):9932-9939. PubMed ID: 31251569 [TBL] [Abstract][Full Text] [Related]
40. Tumour cell identification by means of Raman spectroscopy in combination with optical traps and microfluidic environments. Dochow S; Krafft C; Neugebauer U; Bocklitz T; Henkel T; Mayer G; Albert J; Popp J Lab Chip; 2011 Apr; 11(8):1484-90. PubMed ID: 21340095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]