BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27064071)

  • 1. Proximal ADP-ribose Hydrolysis in Trypanosomatids is Catalyzed by a Macrodomain.
    Haikarainen T; Lehtiö L
    Sci Rep; 2016 Apr; 6():24213. PubMed ID: 27064071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple crystal forms of human MacroD2.
    Wazir S; Maksimainen MM; Lehtiö L
    Acta Crystallogr F Struct Biol Commun; 2020 Oct; 76(Pt 10):477-482. PubMed ID: 33006575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ARH and Macrodomain Families of α-ADP-ribose-acceptor Hydrolases Catalyze α-NAD
    Stevens LA; Kato J; Kasamatsu A; Oda H; Lee DY; Moss J
    ACS Chem Biol; 2019 Dec; 14(12):2576-2584. PubMed ID: 31599159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis for the MacroD1-mediated hydrolysis of ADP-ribosylation.
    Yang X; Ma Y; Li Y; Dong Y; Yu LL; Wang H; Guo L; Wu C; Yu X; Liu X
    DNA Repair (Amst); 2020 Oct; 94():102899. PubMed ID: 32683309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation-dependent ADP-ribosylation by Trypanosoma brucei Sir2.
    Kowieski TM; Lee S; Denu JM
    J Biol Chem; 2008 Feb; 283(9):5317-26. PubMed ID: 18165239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The macro domain is an ADP-ribose binding module.
    Karras GI; Kustatscher G; Buhecha HR; Allen MD; Pugieux C; Sait F; Bycroft M; Ladurner AG
    EMBO J; 2005 Jun; 24(11):1911-20. PubMed ID: 15902274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology.
    Haikarainen T; Maksimainen MM; Obaji E; Lehtiö L
    SLAS Discov; 2018 Mar; 23(3):255-263. PubMed ID: 29028410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side chain specificity of ADP-ribosylation by a sirtuin.
    Fahie K; Hu P; Swatkoski S; Cotter RJ; Zhang Y; Wolberger C
    FEBS J; 2009 Dec; 276(23):7159-76. PubMed ID: 19895577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional analysis of
    Zapata-Pérez R; Gil-Ortiz F; Martínez-Moñino AB; García-Saura AG; Juanhuix J; Sánchez-Ferrer Á
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based mechanism of ADP-ribosylation by sirtuins.
    Hawse WF; Wolberger C
    J Biol Chem; 2009 Nov; 284(48):33654-61. PubMed ID: 19801667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SARS-CoV-2 Conserved Macrodomain Is a Mono-ADP-Ribosylhydrolase.
    Alhammad YMO; Kashipathy MM; Roy A; Gagné JP; McDonald P; Gao P; Nonfoux L; Battaile KP; Johnson DK; Holmstrom ED; Poirier GG; Lovell S; Fehr AR
    J Virol; 2021 Jan; 95(3):. PubMed ID: 33158944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1.
    Deng J; Schnaufer A; Salavati R; Stuart KD; Hol WG
    J Mol Biol; 2004 Oct; 343(3):601-13. PubMed ID: 15465048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition.
    Pourfarjam Y; Ventura J; Kurinov I; Cho A; Moss J; Kim IK
    J Biol Chem; 2018 Aug; 293(32):12350-12359. PubMed ID: 29907568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.
    Chen D; Vollmar M; Rossi MN; Phillips C; Kraehenbuehl R; Slade D; Mehrotra PV; von Delft F; Crosthwaite SK; Gileadi O; Denu JM; Ahel I
    J Biol Chem; 2011 Apr; 286(15):13261-71. PubMed ID: 21257746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and biochemical functions of SIRT6.
    Pan PW; Feldman JL; Devries MK; Dong A; Edwards AM; Denu JM
    J Biol Chem; 2011 Apr; 286(16):14575-87. PubMed ID: 21362626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
    Gabelli SB; Bianchet MA; Bessman MJ; Amzel LM
    Nat Struct Biol; 2001 May; 8(5):467-72. PubMed ID: 11323725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Legionella metaeffector MavL reverses ubiquitin ADP-ribosylation via a conserved arginine-specific macrodomain.
    Zhang Z; Fu J; Rack JGM; Li C; Voorneveld J; Filippov DV; Ahel I; Luo ZQ; Das C
    Nat Commun; 2024 Mar; 15(1):2452. PubMed ID: 38503748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.
    Neuvonen M; Ahola T
    J Mol Biol; 2009 Jan; 385(1):212-25. PubMed ID: 18983849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP-ribosyl cyclase; crystal structures reveal a covalent intermediate.
    Love ML; Szebenyi DM; Kriksunov IA; Thiel DJ; Munshi C; Graeff R; Lee HC; Hao Q
    Structure; 2004 Mar; 12(3):477-86. PubMed ID: 15016363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.