These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27064101)

  • 1. Stability of Surface Nanobubbles: A Molecular Dynamics Study.
    Maheshwari S; van der Hoef M; Zhang X; Lohse D
    Langmuir; 2016 Nov; 32(43):11116-11122. PubMed ID: 27064101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pinning and gas oversaturation imply stable single surface nanobubbles.
    Lohse D; Zhang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031003. PubMed ID: 25871042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leakiness of Pinned Neighboring Surface Nanobubbles Induced by Strong Gas-Surface Interaction.
    Maheshwari S; van der Hoef M; Rodrı Guez Rodrı Guez J; Lohse D
    ACS Nano; 2018 Mar; 12(3):2603-2609. PubMed ID: 29438620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threshold current density for diffusion-controlled stability of electrolytic surface nanobubbles.
    Zhang Y; Zhu X; Wood JA; Lohse D
    Proc Natl Acad Sci U S A; 2024 May; 121(21):e2321958121. PubMed ID: 38748584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive interaction of multiple surface nanobubbles: shrinkage, growth, and coarsening.
    Zhu X; Verzicco R; Zhang X; Lohse D
    Soft Matter; 2018 Mar; 14(11):2006-2014. PubMed ID: 29457812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of Surface Nanobubbles without Contact Line Pinning.
    Guo Z; Wang X; Zhang X
    Langmuir; 2019 Jun; 35(25):8482-8489. PubMed ID: 31141370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A unified mechanism for the stability of surface nanobubbles: contact line pinning and supersaturation.
    Liu Y; Zhang X
    J Chem Phys; 2014 Oct; 141(13):134702. PubMed ID: 25296823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation.
    Chen YX; Chen YL; Yen TH
    Langmuir; 2018 Dec; 34(50):15360-15369. PubMed ID: 30480451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of impurities in the description of surface nanobubbles: role of nonidealities in the surface layer.
    Das S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066315. PubMed ID: 21797485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface charge-induced EDL interaction on the contact angle of surface nanobubbles.
    Jing D; Li D; Pan Y; Bhushan B
    Langmuir; 2016 Nov; 32(43):11123-11132. PubMed ID: 27258966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic equilibrium mechanism for surface nanobubble stabilization.
    Brenner MP; Lohse D
    Phys Rev Lett; 2008 Nov; 101(21):214505. PubMed ID: 19113416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the phase and interface behavior along the three-phase line of ternary Lennard-Jones mixtures: a collaborative approach based on square gradient theory and molecular dynamics simulations.
    Garrido JM; Quinteros-Lama H; Piñeiro MM; Mejía A; Segura H
    J Chem Phys; 2014 Jul; 141(1):014503. PubMed ID: 25005295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of surface nanobubbles and the universality of their contact angles: a molecular dynamics approach.
    Weijs JH; Snoeijer JH; Lohse D
    Phys Rev Lett; 2012 Mar; 108(10):104501. PubMed ID: 22463413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic Equilibrium Model for Surface Nanobubbles in Electrochemistry.
    Ma Y; Guo Z; Chen Q; Zhang X
    Langmuir; 2021 Mar; 37(8):2771-2779. PubMed ID: 33576638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forced oscillation dynamics of surface nanobubbles.
    Dockar D; Gibelli L; Borg MK
    J Chem Phys; 2020 Nov; 153(18):184705. PubMed ID: 33187431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale pinning effect evaluated from deformed nanobubbles.
    Teshima H; Nishiyama T; Takahashi K
    J Chem Phys; 2017 Jan; 146(1):014708. PubMed ID: 28063422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.
    Song B; Chen K; Schmittel M; Schönherr H
    Langmuir; 2016 Nov; 32(43):11172-11178. PubMed ID: 27297876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on Nanobubble-on-Pancake Objects Forming at Polystyrene/Water Interface.
    Li D; Pan Y; Zhao X; Bhushan B
    Langmuir; 2016 Nov; 32(43):11256-11264. PubMed ID: 27391804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pinning-Depinning Mechanism of the Contact Line during Evaporation on Chemically Patterned Surfaces: A Lattice Boltzmann Study.
    Li Q; Zhou P; Yan HJ
    Langmuir; 2016 Sep; 32(37):9389-96. PubMed ID: 27579557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanobubble stability induced by contact line pinning.
    Liu Y; Zhang X
    J Chem Phys; 2013 Jan; 138(1):014706. PubMed ID: 23298056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.