These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27064302)

  • 1. Mechanisms of the Water-Gas Shift Reaction Catalyzed by Ruthenium Carbonyl Complexes.
    Liu N; Guo L; Cao Z; Li W; Zheng X; Shi Y; Guo J; Xi Y
    J Phys Chem A; 2016 Apr; 120(15):2408-19. PubMed ID: 27064302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amidinatogermylene derivatives of ruthenium carbonyl: new insights into the reactivity of [Ru3(CO)12] with two-electron-donor reagents of high basicity.
    Álvarez-Rodríguez L; Cabeza JA; García-Álvarez P; Pérez-Carreño E; Polo D
    Inorg Chem; 2015 Mar; 54(6):2983-94. PubMed ID: 25712336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.
    Chakraborty I; Carrington SJ; Mascharak PK
    Acc Chem Res; 2014 Aug; 47(8):2603-11. PubMed ID: 25003608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold(III)-CO and gold(III)-CO2 complexes and their role in the water-gas shift reaction.
    Roşca DA; Fernandez-Cestau J; Morris J; Wright JA; Bochmann M
    Sci Adv; 2015 Oct; 1(9):e1500761. PubMed ID: 26601313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical investigation of water gas shift reaction catalyzed by iron group carbonyl complexes M(CO)5 (M = Fe, Ru, Os).
    Chen Y; Zhang F; Xu C; Gao J; Zhai D; Zhao Z
    J Phys Chem A; 2012 Mar; 116(10):2529-35. PubMed ID: 22309054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT calculations of 1H and 13C NMR chemical shifts in transition metal hydrides.
    del Rosal I; Maron L; Poteau R; Jolibois F
    Dalton Trans; 2008 Aug; (30):3959-70. PubMed ID: 18648699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational study of the CO dissociation in cyclopentadienyl ruthenium complexes relevant to the racemization of alcohols.
    Stewart B; Nyhlen J; Martín-Matute B; Bäckvall JE; Privalov T
    Dalton Trans; 2013 Jan; 42(4):927-34. PubMed ID: 23060073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes.
    Romain S; Vigara L; Llobet A
    Acc Chem Res; 2009 Dec; 42(12):1944-53. PubMed ID: 19908829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylation of arene C-H bonds with CO2: a DFT-based approach to catalyst design.
    Uhe A; Hölscher M; Leitner W
    Chemistry; 2012 Jan; 18(1):170-7. PubMed ID: 22144068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of the selectivity and activity of ruthenium-cluster catalysts for fuel-cell feed-gas purification: a gas-phase approach.
    Lang SM; Bernhardt TM; Krstić M; Bonačić-Koutecký V
    Angew Chem Int Ed Engl; 2014 May; 53(21):5467-71. PubMed ID: 24803209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-gas shift reaction on oxide∕Cu(111): Rational catalyst screening from density functional theory.
    Liu P
    J Chem Phys; 2010 Nov; 133(20):204705. PubMed ID: 21133450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of the water-gas shift reaction catalyzed by ruthenium pentacarbonyl: a density functional theory study.
    Schulz H; Görling A; Hieringer W
    Inorg Chem; 2013 May; 52(9):4786-94. PubMed ID: 23600366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping the transformation [{Ru(II)(CO)(3)Cl(2)}(2)]-->[Ru(I) (2)(CO)(4)](2+): implications in binuclear water-gas shift chemistry.
    Majumdar M; Sinha A; Ghatak T; Patra SK; Sadhukhan N; Rahaman SM; Bera JK
    Chemistry; 2010 Feb; 16(8):2574-85. PubMed ID: 20077542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO.
    Seixas JD; Santos MF; Mukhopadhyay A; Coelho AC; Reis PM; Veiros LF; Marques AR; Penacho N; Gonçalves AM; Romão MJ; Bernardes GJ; Santos-Silva T; Romão CC
    Dalton Trans; 2015 Mar; 44(11):5058-75. PubMed ID: 25427784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected Direct Hydride Transfer Mechanism for the Hydrogenation of Ethyl Acetate to Ethanol Catalyzed by SNS Pincer Ruthenium Complexes.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Feb; 22(6):1950-1957. PubMed ID: 26751717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional study of water-gas shift reaction on M3O(3x)/Cu(111).
    Vidal AB; Liu P
    Phys Chem Chem Phys; 2012 Dec; 14(48):16626-32. PubMed ID: 22955873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bis(allyl)-ruthenium(IV) complexes as highly efficient catalysts for the redox isomerization of allylic alcohols into carbonyl compounds in organic and aqueous media: scope, limitations, and theoretical analysis of the mechanism.
    Cadierno V; García-Garrido SE; Gimeno J; Varela-Alvarez A; Sordo JA
    J Am Chem Soc; 2006 Feb; 128(4):1360-70. PubMed ID: 16433556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The activation of gold and the water-gas shift reaction: insights from studies with model catalysts.
    Rodriguez JA; Senanayake SD; Stacchiola D; Liu P; Hrbek J
    Acc Chem Res; 2014 Mar; 47(3):773-82. PubMed ID: 24191672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.