These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 27064348)

  • 1. Double-Sided Opportunities Using Chemical Lift-Off Lithography.
    Andrews AM; Liao WS; Weiss PS
    Acc Chem Res; 2016 Aug; 49(8):1449-57. PubMed ID: 27064348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterning of supported gold monolayers via chemical lift-off lithography.
    Slaughter LS; Cheung KM; Kaappa S; Cao HH; Yang Q; Young TD; Serino AC; Malola S; Olson JM; Link S; Häkkinen H; Andrews AM; Weiss PS
    Beilstein J Nanotechnol; 2017; 8():2648-2661. PubMed ID: 29259879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical Lift-Off Lithography of Metal and Semiconductor Surfaces.
    Cheung KM; Stemer DM; Zhao C; Young TD; Belling JN; Andrews AM; Weiss PS
    ACS Mater Lett; 2020 Jan; 2(1):76-83. PubMed ID: 32405626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtractive patterning via chemical lift-off lithography.
    Liao WS; Cheunkar S; Cao HH; Bednar HR; Weiss PS; Andrews AM
    Science; 2012 Sep; 337(6101):1517-21. PubMed ID: 22997333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled DNA Patterning by Chemical Lift-Off Lithography: Matrix Matters.
    Cao HH; Nakatsuka N; Serino AC; Liao WS; Cheunkar S; Yang H; Weiss PS; Andrews AM
    ACS Nano; 2015 Nov; 9(11):11439-54. PubMed ID: 26426585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning.
    Wang CM; Chan HS; Liao CL; Chang CW; Liao WS
    Beilstein J Nanotechnol; 2023; 14():34-44. PubMed ID: 36703907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wafer-scale bioactive substrate patterning by chemical lift-off lithography.
    Chen CY; Wang CM; Li HH; Chan HH; Liao WS
    Beilstein J Nanotechnol; 2018; 9():311-320. PubMed ID: 29441274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Collapse Lithography.
    Zhao C; Xu X; Yang Q; Man T; Jonas SJ; Schwartz JJ; Andrews AM; Weiss PS
    Nano Lett; 2017 Aug; 17(8):5035-5042. PubMed ID: 28737930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography.
    Zhao C; Xu X; Bae SH; Yang Q; Liu W; Belling JN; Cheung KM; Rim YS; Yang Y; Andrews AM; Weiss PS
    Nano Lett; 2018 Sep; 18(9):5590-5595. PubMed ID: 30060654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bipolar electrochemical approach to constructive lithography: metal/monolayer patterns via consecutive site-defined oxidation and reduction.
    Zeira A; Berson J; Feldman I; Maoz R; Sagiv J
    Langmuir; 2011 Jul; 27(13):8562-75. PubMed ID: 21661737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale patterning of organic monolayers by catalytic stamp lithography: scope and limitations.
    Mizuno H; Buriak JM
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2711-20. PubMed ID: 20356148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal nanoparticle arrays via a water-based lift-off scheme using a block copolymer template.
    Landeke-Wilsmark B; Hägglund C
    Nanotechnology; 2022 May; 33(32):. PubMed ID: 35579929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Electron Beam Lithography: Chemical Monolayer Nanopatterning via Electron-Beam-Induced Interfacial Solid-Phase Oxidation.
    Maoz R; Berson J; Burshtain D; Nelson P; Zinger A; Bitton O; Sagiv J
    ACS Nano; 2018 Oct; 12(10):9680-9692. PubMed ID: 30215511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Area Nanoparticle Alignment by Chemical Lift-Off Lithography.
    Chen CY; Chang CH; Wang CM; Li YJ; Chu HY; Chan HH; Huang YW; Liao WS
    Nanomaterials (Basel); 2018 Jan; 8(2):. PubMed ID: 29382044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic stamp lithography for sub-100 nm patterning of organic monolayers.
    Mizuno H; Buriak JM
    J Am Chem Soc; 2008 Dec; 130(52):17656-7. PubMed ID: 19063631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-selective biofunctionalization of aluminum nitride surfaces using patterned organosilane self-assembled monolayers.
    Chiu CS; Lee HM; Gwo S
    Langmuir; 2010 Feb; 26(4):2969-74. PubMed ID: 19810718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-Temperature, Dry Transfer-Printing of a Patterned Graphene Monolayer.
    Cha S; Cha M; Lee S; Kang JH; Kim C
    Sci Rep; 2015 Dec; 5():17877. PubMed ID: 26648526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-area patterning of coinage-metal thin films using decal transfer lithography.
    Childs WR; Nuzzo RG
    Langmuir; 2005 Jan; 21(1):195-202. PubMed ID: 15620303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer resist for patterned contact printing of aligned nanowire arrays.
    Takahashi T; Takei K; Ho JC; Chueh YL; Fan Z; Javey A
    J Am Chem Soc; 2009 Feb; 131(6):2102-3. PubMed ID: 19173560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft lithographic functionalization and patterning oxide-free silicon and germanium.
    Bowers CM; Toone EJ; Clark RL; Shestopalov AA
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22214997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.