These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 27064519)

  • 1. Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors.
    Requião RD; de Souza HJ; Rossetto S; Domitrovic T; Palhano FL
    RNA Biol; 2016 Jun; 13(6):561-8. PubMed ID: 27064519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translation inhibitors cause abnormalities in ribosome profiling experiments.
    Gerashchenko MV; Gladyshev VN
    Nucleic Acids Res; 2014; 42(17):e134. PubMed ID: 25056308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
    Ingolia NT; Ghaemmaghami S; Newman JR; Weissman JS
    Science; 2009 Apr; 324(5924):218-23. PubMed ID: 19213877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe.
    Duncan CDS; Mata J
    Sci Rep; 2017 Sep; 7(1):10331. PubMed ID: 28871121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE; Archer SK; Beilharz TH; Powell D; Preiss T
    Nat Protoc; 2017 Apr; 12(4):697-731. PubMed ID: 28253237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome Collisions Result in +1 Frameshifting in the Absence of No-Go Decay.
    Simms CL; Yan LL; Qiu JK; Zaher HS
    Cell Rep; 2019 Aug; 28(7):1679-1689.e4. PubMed ID: 31412239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel mRNA-specific effects of ribosome drop-off on translation rate and polysome profile.
    Bonnin P; Kern N; Young NT; Stansfield I; Romano MC
    PLoS Comput Biol; 2017 May; 13(5):e1005555. PubMed ID: 28558053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cycloheximide can distort measurements of mRNA levels and translation efficiency.
    Santos DA; Shi L; Tu BP; Weissman JS
    Nucleic Acids Res; 2019 Jun; 47(10):4974-4985. PubMed ID: 30916348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast.
    Hussmann JA; Patchett S; Johnson A; Sawyer S; Press WH
    PLoS Genet; 2015 Dec; 11(12):e1005732. PubMed ID: 26656907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rqc1 and other yeast proteins containing highly positively charged sequences are not targets of the RQC complex.
    Barros GC; Requião RD; Carneiro RL; Masuda CA; Moreira MH; Rossetto S; Domitrovic T; Palhano FL
    J Biol Chem; 2021; 296():100586. PubMed ID: 33774050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No mercy for messages that mess with the ribosome.
    Clement SL; Lykke-Andersen J
    Nat Struct Mol Biol; 2006 Apr; 13(4):299-301. PubMed ID: 16715045
    [No Abstract]   [Full Text] [Related]  

  • 12. RiboDiPA: a novel tool for differential pattern analysis in Ribo-seq data.
    Li K; Hope CM; Wang XA; Wang JP
    Nucleic Acids Res; 2020 Dec; 48(21):12016-12029. PubMed ID: 33211868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unbiased Quantitative Models of Protein Translation Derived from Ribosome Profiling Data.
    Gritsenko AA; Hulsman M; Reinders MJ; de Ridder D
    PLoS Comput Biol; 2015 Aug; 11(8):e1004336. PubMed ID: 26275099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments.
    Sharma P; Wu J; Nilges BS; Leidel SA
    Nat Commun; 2021 Aug; 12(1):5094. PubMed ID: 34429433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation drives mRNA quality control.
    Shoemaker CJ; Green R
    Nat Struct Mol Biol; 2012 Jun; 19(6):594-601. PubMed ID: 22664987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y; Boas FE; Brown PO; Herschlag D
    Nucleic Acids Res; 2005; 33(8):2421-32. PubMed ID: 15860778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inferring translational heterogeneity from Saccharomyces cerevisiae ribosome profiling.
    do Couto Bordignon P; Pechmann S
    FEBS J; 2021 Aug; 288(15):4541-4559. PubMed ID: 33539640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The extent of ribosome queuing in budding yeast.
    Diament A; Feldman A; Schochet E; Kupiec M; Arava Y; Tuller T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005951. PubMed ID: 29377894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of nascent peptides that induce ribosome stalling and their proteomic distribution in
    Sabi R; Tuller T
    RNA; 2017 Jul; 23(7):983-994. PubMed ID: 28363900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments.
    Ingolia NT; Brar GA; Rouskin S; McGeachy AM; Weissman JS
    Nat Protoc; 2012 Jul; 7(8):1534-50. PubMed ID: 22836135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.