BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1227 related articles for article (PubMed ID: 27064824)

  • 1. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations.
    Luu TP; He Y; Brown S; Nakagome S; Contreras-Vidal JL
    Int Conf Virtual Rehabil; 2015 Jun; 2015():30-37. PubMed ID: 27713915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-modal modified feedback self-paced BCI to control the gait of an avatar.
    Alchalabi B; Faubert J; Labbé DR
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33711832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mobile brain-body imaging dataset recorded during treadmill walking with a brain-computer interface.
    He Y; Luu TP; Nathan K; Nakagome S; Contreras-Vidal JL
    Sci Data; 2018 Apr; 5():180074. PubMed ID: 29688217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.
    Luu TP; Nakagome S; He Y; Contreras-Vidal JL
    Sci Rep; 2017 Aug; 7(1):8895. PubMed ID: 28827542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis.
    Vourvopoulos A; Bermúdez I Badia S
    J Neuroeng Rehabil; 2016 Aug; 13(1):69. PubMed ID: 27503007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Closed-loop cortical control of virtual reach and posture using Cartesian and joint velocity commands.
    Young D; Willett F; Memberg WD; Murphy B; Rezaii P; Walter B; Sweet J; Miller J; Shenoy KV; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2019 Apr; 16(2):026011. PubMed ID: 30523839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
    Presacco A; Goodman R; Forrester L; Contreras-Vidal JL
    J Neurophysiol; 2011 Oct; 106(4):1875-87. PubMed ID: 21768121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity.
    Xu R; Jiang N; Mrachacz-Kersting N; Lin C; Asín Prieto G; Moreno JC; Pons JL; Dremstrup K; Farina D
    IEEE Trans Biomed Eng; 2014 Jul; 61(7):2092-101. PubMed ID: 24686231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Evaluation of Virtual Reality-based Turning on a Self-Paced Linear Treadmill.
    Oh K; Stanley CJ; Damiano DL; Kim J; Yoon J; Park HS
    Gait Posture; 2018 Sep; 65():157-162. PubMed ID: 30510358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy.
    Hashimoto Y; Ushiba J; Kimura A; Liu M; Tomita Y
    BMC Neurosci; 2010 Sep; 11():117. PubMed ID: 20846418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial.
    Calabrò RS; Naro A; Russo M; Leo A; De Luca R; Balletta T; Buda A; La Rosa G; Bramanti A; Bramanti P
    J Neuroeng Rehabil; 2017 Jun; 14(1):53. PubMed ID: 28592282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
    Goh SK; Abbass HA; Tan KC; Al-Mamun A; Thakor N; Bezerianos A; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1858-1867. PubMed ID: 30106679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Actual and Imagined Walking Related Desynchronization Features in a BCI.
    Severens M; Perusquia-Hernandez M; Nienhuis B; Farquhar J; Duysens J
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):877-86. PubMed ID: 26353236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke.
    Johnson NN; Carey J; Edelman BJ; Doud A; Grande A; Lakshminarayan K; He B
    J Neural Eng; 2018 Feb; 15(1):016009. PubMed ID: 28914232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke.
    Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL
    Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 62.