These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1286 related articles for article (PubMed ID: 27064824)
21. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials. Said RR; Heyat MBB; Song K; Tian C; Wu Z Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100 [TBL] [Abstract][Full Text] [Related]
22. [Virtual reality-brain computer interface hand function enhancement rehabilitation system incorporating multi-sensory stimulation]. Shao X; Zhang Y; Zhang D; Men Y; Wang Z; Chen X; Xie P Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Aug; 41(4):656-663. PubMed ID: 39218590 [TBL] [Abstract][Full Text] [Related]
23. Neural Decoding of Robot-Assisted Gait During Rehabilitation After Stroke. Contreras-Vidal JL; Bortole M; Zhu F; Nathan K; Venkatakrishnan A; Francisco GE; Soto R; Pons JL Am J Phys Med Rehabil; 2018 Aug; 97(8):541-550. PubMed ID: 29481376 [TBL] [Abstract][Full Text] [Related]
24. Analysis of Gait Kinematics in Smart Walker-Assisted Locomotion in Immersive Virtual Reality Scenario. Loureiro M; Elias A; Machado F; Bezerra M; Zimerer C; Mello R; Frizera A Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275445 [TBL] [Abstract][Full Text] [Related]
25. Using a hybrid brain computer interface and virtual reality system to monitor and promote cortical reorganization through motor activity and motor imagery training. Bermúdez i Badia S; García Morgade A; Samaha H; Verschure PF IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):174-81. PubMed ID: 23204287 [TBL] [Abstract][Full Text] [Related]
27. Brain-computer interface control along instructed paths. Sadtler PT; Ryu SI; Tyler-Kabara EC; Yu BM; Batista AP J Neural Eng; 2015 Feb; 12(1):016015. PubMed ID: 25605498 [TBL] [Abstract][Full Text] [Related]
28. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. Winter C; Kern F; Gall D; Latoschik ME; Pauli P; Käthner I J Neuroeng Rehabil; 2021 Apr; 18(1):68. PubMed ID: 33888148 [TBL] [Abstract][Full Text] [Related]
30. The Current Research of Combining Multi-Modal Brain-Computer Interfaces With Virtual Reality. Wen D; Liang B; Zhou Y; Chen H; Jung TP IEEE J Biomed Health Inform; 2021 Sep; 25(9):3278-3287. PubMed ID: 33373308 [TBL] [Abstract][Full Text] [Related]
31. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
32. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking. Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158 [TBL] [Abstract][Full Text] [Related]
33. Controlling an avatar by thought using real-time fMRI. Cohen O; Koppel M; Malach R; Friedman D J Neural Eng; 2014 Jun; 11(3):035006. PubMed ID: 24834973 [TBL] [Abstract][Full Text] [Related]
34. P300 Brain-Computer Interface-Based Drone Control in Virtual and Augmented Reality. Kim S; Lee S; Kang H; Kim S; Ahn M Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502655 [TBL] [Abstract][Full Text] [Related]
35. An Upper-Limb Rehabilitation Exoskeleton System Controlled by MI Recognition Model With Deep Emphasized Informative Features in a VR Scene. Tang Z; Wang H; Cui Z; Jin X; Zhang L; Peng Y; Xing B IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4390-4401. PubMed ID: 37910412 [TBL] [Abstract][Full Text] [Related]
36. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637 [TBL] [Abstract][Full Text] [Related]
37. Motor Imagery Performance through Embodied Digital Twins in a Virtual Reality-Enabled Brain-Computer Interface Environment. Lakshminarayanan K; Shah R; Ramu V; Madathil D; Yao Y; Wang I; Brahmi B; Rahman MH J Vis Exp; 2024 May; (207):. PubMed ID: 38801273 [TBL] [Abstract][Full Text] [Related]
38. Assisted closed-loop optimization of SSVEP-BCI efficiency. Fernandez-Vargas J; Pfaff HU; Rodríguez FB; Varona P Front Neural Circuits; 2013; 7():27. PubMed ID: 23443214 [TBL] [Abstract][Full Text] [Related]
39. Structural and functional correlates of motor imagery BCI performance: Insights from the patterns of fronto-parietal attention network. Zhang T; Liu T; Li F; Li M; Liu D; Zhang R; He H; Li P; Gong J; Luo C; Yao D; Xu P Neuroimage; 2016 Jul; 134():475-485. PubMed ID: 27103137 [TBL] [Abstract][Full Text] [Related]
40. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals. Presacco A; Forrester LW; Contreras-Vidal JL IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):212-9. PubMed ID: 22438336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]