These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27065052)

  • 1. Drop-off detection with the long cane: effect of cane shaft weight and rigidity on performance.
    Kim DS; Wall Emerson R; Naghshineh K; Auer A
    Ergonomics; 2017 Jan; 60(1):59-68. PubMed ID: 27065052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ergonomic factors related to drop-off detection with the long cane: effects of cane tips and techniques.
    Kim DS; Emerson RS; Curtis AB
    Hum Factors; 2010 Jun; 52(3):456-65. PubMed ID: 21077566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving obstacle detection by redesign of walking canes for blind persons.
    Schellingerhout R; Bongers RM; van Grinsven R; Smitsman AW; Van Galen GP
    Ergonomics; 2001 Apr; 44(5):513-26. PubMed ID: 11345494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of user characteristics related to drop-off detection with long cane.
    Kim DS; Emerson RW; Curtis A
    J Rehabil Res Dev; 2010; 47(3):233-42. PubMed ID: 20665349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new primary mobility tool for the visually impaired: A white cane-adaptive mobility device hybrid.
    Rizzo JR; Conti K; Thomas T; Hudson TE; Wall Emerson R; Kim DS
    Assist Technol; 2018; 30(5):219-225. PubMed ID: 28506151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postures and repetitive movements during use of a long cane by individuals with visual impairment.
    Mount J; Howard PD; Dalla Palu AL; Grafstrom A; Pinto DM; Rudy SL
    J Orthop Sports Phys Ther; 2001 Jul; 31(7):375-83. PubMed ID: 11451308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of long cane usage characteristics with the constant contact technique.
    Kim Y; Moncada-Torres A; Furrer J; Riesch M; Gassert R
    Appl Ergon; 2016 Jul; 55():216-225. PubMed ID: 26965194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obstacle Detection with the Long Cane: Effect of Cane Tip Design and Technique Modification on Performance.
    Kim DS; Emerson RW
    J Vis Impair Blind; 2018; 112(5):435-446. PubMed ID: 30923414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cane length and swing arc width on drop-off and obstacle detection with the long cane.
    Kim DS; Emerson RW; Naghshineh K
    Br J Vis Impair; 2017 Sep; 35(3):217-231. PubMed ID: 29276326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of hand-transmitted vibration of tapping the long cane for visually handicapped people in Japan.
    Morioka M; Maeda S
    Ind Health; 1998 Apr; 36(2):179-90. PubMed ID: 9583316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced Augmented White Cane with obstacle height and distance feedback.
    Pyun R; Kim Y; Wespe P; Gassert R; Schneller S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650358. PubMed ID: 24187177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perception and satisfaction of blind individuals regarding an electronic cane prototype with a wearable haptic device.
    Texeira CHM; Costa ALFA; Rodrigues AA; Santos VRD; Berezovsky A
    Arq Bras Oftalmol; 2024; 88(2):e20230317. PubMed ID: 39319915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the navigation system for the visually impaired by using white cane.
    Hirahara Y; Sakurai Y; Shiidu Y; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4893-6. PubMed ID: 17945865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop-off Detection with the Long Cane: Effects of Different Cane Techniques on Performance.
    Kim DS; Emerson RW; Curtis A
    J Vis Impair Blind; 2009 Sep; 103(9):519-530. PubMed ID: 21209791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biomechanical evaluation of visually impaired persons' gait and long-cane mechanics.
    Ramsey VK; Blasch BB; Kita A; Johnson BF
    J Rehabil Res Dev; 1999 Oct; 36(4):323-32. PubMed ID: 10678455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of voice navigation system for the visually impaired by using IC tags.
    Takatori N; Nojima K; Matsumoto M; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5181-4. PubMed ID: 17945882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Vibrotactile Patterns Encoding Obstacle Distance Information.
    Kim Y; Harders M; Gassert R
    IEEE Trans Haptics; 2015; 8(3):298-305. PubMed ID: 25807569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal sensing and intuitive steering assistance improve navigation and mobility for people with impaired vision.
    Slade P; Tambe A; Kochenderfer MJ
    Sci Robot; 2021 Oct; 6(59):eabg6594. PubMed ID: 34644159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A detachable electronic device for use with a long white cane to assist with mobility.
    O'Brien EE; Mohtar AA; Diment LE; Reynolds KJ
    Assist Technol; 2014; 26(4):219-26. PubMed ID: 25771607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, development, and clinical evaluation of the electronic mobility cane for vision rehabilitation.
    Bhatlawande S; Mahadevappa M; Mukherjee J; Biswas M; Das D; Gupta S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Nov; 22(6):1148-59. PubMed ID: 24860035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.