BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2706521)

  • 1. Auditory neural activity evoked by pure-tone stimulation as a function of intensity.
    Ryan AF; Braverman S; Woolf NK; Axelsson GA
    Brain Res; 1989 Apr; 483(2):283-93. PubMed ID: 2706521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional ontogeny in the central auditory pathway of the Mongolian gerbil. A 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    Exp Brain Res; 1982; 47(3):428-36. PubMed ID: 7128710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tonotopic organization in the central auditory pathway of the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK; Sharp FR
    J Comp Neurol; 1982 Jun; 207(4):369-80. PubMed ID: 7119149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal substrates involved in processing of communicative acoustic signals in tree shrews: a 2-deoxyglucose study.
    Binz H; Zurhorst C; Zimmermann E; Rahmann H
    Neurosci Lett; 1990 Apr; 112(1):25-30. PubMed ID: 2385359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentobarbital and ketamine alter the pattern of 2-deoxyglucose uptake in the central auditory system of the gerbil.
    Wang ZX; Ryan AF; Woolf NK
    Hear Res; 1987; 27(2):145-55. PubMed ID: 3610843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Central auditory metabolic activity induced by intense noise exposure.
    Ryan AF; Axelsson GA; Woolf NK
    Hear Res; 1992 Aug; 61(1-2):24-30. PubMed ID: 1326506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing intensities of wide band noise increase [14C]2-deoxyglucose uptake in gerbil central auditory structures.
    Sharp FR; Ryan AF; Goodwin P; Woolf NK
    Brain Res; 1981 Dec; 230(1-2):87-96. PubMed ID: 7317792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional activation in the auditory system of the rat produced by arousing reticular stimulation: a 2-deoxyglucose study.
    Gonzalez-Lima F; Scheich H
    Brain Res; 1984 May; 299(2):201-14. PubMed ID: 6733446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spatial representation of frequency in the rat dorsal cochlear nucleus and inferior colliculus.
    Ryan AF; Furlow Z; Woolf NK; Keithley EM
    Hear Res; 1988 Nov; 36(2-3):181-9. PubMed ID: 3209491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of tonotopic representation in the Mongolian gerbil: a 2-deoxyglucose study.
    Ryan AF; Woolf NK
    Brain Res; 1988 Jun; 469(1-2):61-70. PubMed ID: 3401808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Deoxyglucose uptake patterns in response to pure tone stimuli in the aged rat inferior colliculus.
    Keithley EM; Lo J; Ryan AF
    Hear Res; 1994 Oct; 80(1):79-85. PubMed ID: 7852206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochleotopic selectivity of a multichannel scala tympani electrode array using the 2-deoxyglucose technique.
    Brown M; Shepherd RK; Webster WR; Martin RL; Clark GM
    Hear Res; 1992 May; 59(2):224-40. PubMed ID: 1618713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central auditory pathway of the gerbil Psammomys obesus: a deoxyglucose study.
    Melzer P
    Hear Res; 1984 Aug; 15(2):187-95. PubMed ID: 6490545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of the cat peripheral auditory system: input-output functions of cochlear potentials.
    Moore DR
    Brain Res; 1981 Aug; 219(1):29-44. PubMed ID: 6266603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response properties and tonotopical organization in the dorsal cochlear nucleus in rats.
    Yajima Y; Hayashi Y
    Exp Brain Res; 1989; 75(2):381-9. PubMed ID: 2721616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement.
    Frisina RD; Smith RL; Chamberlain SC
    Hear Res; 1990 Mar; 44(2-3):99-122. PubMed ID: 2329098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of response properties of inferior colliculus neurons following acute cochlear damage.
    Wang J; Salvi RJ; Powers N
    J Neurophysiol; 1996 Jan; 75(1):171-83. PubMed ID: 8822550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory evoked responses in human auditory cortex to the variation of sound intensity in an ongoing tone.
    Soeta Y; Nakagawa S
    Hear Res; 2012 May; 287(1-2):67-75. PubMed ID: 22726618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae).
    Penna M; Velásquez N; Solís R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):361-71. PubMed ID: 18214495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compound action potential offset and onset tuning curves generated by simultaneous masking in the mongolian gerbil. Effects of varying the intensity of the probe stimulus from 55 to 85 dB SPL.
    Henry KR
    Hear Res; 1987; 30(1):49-54. PubMed ID: 3680053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.