These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2706521)

  • 21. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Auditory stimulation alters the pattern of 2-deoxyglucose uptake in the inner ear.
    Ryan AF; Goodwin P; Woolf NK; Sharp F
    Brain Res; 1982 Feb; 234(2):213-25. PubMed ID: 7059827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis.
    Heeringa AN; van Dijk P
    Hear Res; 2016 Jan; 331():47-56. PubMed ID: 26523371
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial distribution of neural activity evoked by electrical stimulation of the cochlea.
    Ryan AF; Miller JM; Wang ZX; Woolf NK
    Hear Res; 1990 Dec; 50(1-2):57-70. PubMed ID: 2076983
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of trigeminal ganglion stimulation on the central auditory system.
    El-Kashlan HK; Shore SE
    Hear Res; 2004 Mar; 189(1-2):25-30. PubMed ID: 14987749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The development of stimulus following in the cochlear nerve and inferior colliculus of the mouse.
    Sanes DH; Constantine-Paton M
    Brain Res; 1985 Oct; 354(2):255-67. PubMed ID: 4052815
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measurement of frequency selectivity of single neurons in the central auditory pathway.
    Calford MB; Webster WR; Semple MM
    Hear Res; 1983 Sep; 11(3):395-401. PubMed ID: 6630090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of age upon auditory evoked potentials from the inferior colliculus and cortex in the guinea pig.
    Dum N
    Arch Otorhinolaryngol; 1983; 238(3):251-61. PubMed ID: 6651608
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrophysiologic correlates of intensity discrimination in cortical evoked potentials of younger and older adults.
    Harris KC; Mills JH; Dubno JR
    Hear Res; 2007 Jun; 228(1-2):58-68. PubMed ID: 17344001
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation.
    Phillips DP; Orman SS
    J Neurophysiol; 1984 Jan; 51(1):147-63. PubMed ID: 6693932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Encoding of amplitude modulation in the gerbil cochlear nucleus: II. Possible neural mechanisms.
    Frisina RD; Smith RL; Chamberlain SC
    Hear Res; 1990 Mar; 44(2-3):123-41. PubMed ID: 2329089
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive exposure of adult cats to bandlimited tone pip ensembles or noise leads to long-term response suppression in auditory cortex.
    Pienkowski M; Munguia R; Eggermont JJ
    Hear Res; 2011 Jul; 277(1-2):117-26. PubMed ID: 21316436
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Features of the auditory development of the short-tailed Brazilian opossum, Monodelphis domestica: evoked responses, neonatal vocalizations and synapses in the inferior colliculus.
    Aitkin L; Cochran S; Frost S; Martsi-McClintock A; Masterton B
    Hear Res; 1997 Nov; 113(1-2):69-75. PubMed ID: 9387986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat.
    Loquet G; Meyer K; Rouiller EM
    Exp Brain Res; 2003 Dec; 153(4):436-42. PubMed ID: 14574431
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Specific sound-induced noradrenergic and serotonergic activation in central auditory structures.
    Cransac H; Cottet-Emard JM; Hellström S; Peyrin L
    Hear Res; 1998 Apr; 118(1-2):151-6. PubMed ID: 9606070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three distinct auditory areas of cortex (AI, AII, and AAF) defined by optical imaging of intrinsic signals.
    Harel N; Mori N; Sawada S; Mount RJ; Harrison RV
    Neuroimage; 2000 Apr; 11(4):302-12. PubMed ID: 10725186
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electrical stimulation of the cochlear nucleus: surface vs. penetrating stimulation.
    el-Kashlan HK; Niparko JK; Altschuler RA; Miller JM
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):533-43. PubMed ID: 1762791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneously-evoked auditory potentials (SEAP): A new method for concurrent measurement of cortical and subcortical auditory-evoked activity.
    Slugocki C; Bosnyak D; Trainor LJ
    Hear Res; 2017 Mar; 345():30-42. PubMed ID: 28043881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An experimental study on the generator of amplitude-modulation following response.
    Kiren T; Aoyagi M; Furuse H; Koike Y
    Acta Otolaryngol Suppl; 1994; 511():28-33. PubMed ID: 8203239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.